Skip to main content

Advertisement

Log in

Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage

  • Laboratory Investigation - Human-Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Alkylating agents, commonly used for brain tumor therapy, induce DNA and RNA lesions that, if not repaired, drive cells to apoptosis. Thus, cellular mechanisms that are responsible for nucleic acid repair are possibly involved in drug resistance. This work analyzes hABH2 and hABH3, two human Fe(II)-dependent dioxygenases in pediatric brain tumors that are treated with alkylating agents. We analyzed 25 brain tumor samples for hABH2 and hABH3 mutations; a subset of samples was tested for quantitative expression with Real-Time PCR. Sequencing analysis showed two new mutations in two glioma patients, one of hABH2 coding sequence (I141 V) and the other of hABH3 (D189 N). The mutation at codon 189 falls in a crucial region of the protein. All subjects analyzed by Real-Time PCR showed an enhanced expression of the two genes, particularly of hABH2. This is the first study of hABH2 and hABH3 in pediatric brain tumors; further molecular investigations of their mutations and expression may help determine their role in response to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes. Mutat Res 577:275–283

    PubMed  CAS  Google Scholar 

  2. Colvin ME, Sasaki JC, Tran NL (1999) Chemical factors in the action of phosphoramidic mustard alkylating anticancer drugs: roles for computational chemistry. Curr Pharm Des 5:645–663

    PubMed  CAS  Google Scholar 

  3. Hongeng S, Brent TP, Sanford RA et al (1997) O6-Methylguanine-DNA methyltransferase protein levels in pediatric brain tumors. Clin Cancer Res 3:2459–2463

    PubMed  CAS  Google Scholar 

  4. Silber JR, Bobola MS, Ghatan S et al (1998) O6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res 58:1068–1073

    PubMed  CAS  Google Scholar 

  5. Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231:11–30

    PubMed  CAS  Google Scholar 

  6. Sedgwick B (2004) Repairing DNA-methylation damage. Nat Rev Mol Cell Biol 5:148–157

    Article  PubMed  CAS  Google Scholar 

  7. Koivisto P, Robins P, Lindahl T et al (2004) Demethylation of 3-methylthymine in DNA by bacterial and human DNA dioxygenases. J Biol Chem 24:40470–40474

    Article  Google Scholar 

  8. Bodell WJ, Singer B (1979) Influence of hydrogen bonding in DNA and polynucleotides on reaction of nitrogens and oxygens toward ethylnitrosourea. Biochemistry 18:2860–2863

    Article  PubMed  CAS  Google Scholar 

  9. Sedgwick B, Robins P, Lindahl T (2006) Direct removal of alkylation damage from DNA by AlkB and related DNA dioxygenases. Methods Enzymol 408:108–120

    Article  PubMed  CAS  Google Scholar 

  10. Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178–182

    Article  PubMed  CAS  Google Scholar 

  11. Yu B, Edstrom WC, Benach J et al (2006) Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 439:879–884

    Article  PubMed  CAS  Google Scholar 

  12. Aravind L, Koonin EV (2001) The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol 2 Epub

  13. Chen BJ, Carroll P, Samson L (1994) The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. J Bacteriol 176:6255–6261

    PubMed  CAS  Google Scholar 

  14. Ashworth DJ, Baird WM, Chang CJ et al (1985) Chemical modification of nucleic acids. Methylation of calf thymus DNA investigated by mass spectrometry and liquid chromatography. Biomed Mass Spectrom 12:309–318

    Article  PubMed  CAS  Google Scholar 

  15. Kang JO (1994) Methylated purine bases in hepatic and colonic RNA of rats treated with 1, 2-dimethylhydrazine. Biochem Med Metab Biol 53:52–57

    Article  PubMed  CAS  Google Scholar 

  16. Falnes PO, Bjoras M, Aas PA et al (2004) Substrate specificities of bacterial and human AlkB proteins. Nucleic Acids Res 32:3456–3461

    Article  PubMed  CAS  Google Scholar 

  17. Mishina Y, Lee CH, He C (2004) Interaction of human and bacterial AlkB proteins with DNA as probed through chemical cross-linking studies. Nucleic Acids Res 32:1548–1554

    Article  PubMed  CAS  Google Scholar 

  18. Aas PA, Otterlei M, Falnes PO et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 20:859–863

    Article  Google Scholar 

  19. Ougland R, Zhang CM, Liiv A et al (2004) AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 16:107–116

    Article  PubMed  CAS  Google Scholar 

  20. Yoshizawa S, Fourmy D, Puglisi JD (1999) Recognition of the codon-anticodon helix by ribosomal RNA. Science 285:1722–1725

    Article  PubMed  CAS  Google Scholar 

  21. Drablos F, Feyzi E, Aas PA et al (2004) Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair 3:1389–1407

    Article  PubMed  CAS  Google Scholar 

  22. Samson L, Derfler B, Waldstein EA (1986) Suppression of human DNA alkylation-repair defects by Escherichia coli DNA-repair genes. Proc Natl Acad Sci USA 83:5607–5610

    Article  PubMed  CAS  Google Scholar 

  23. Sundheim O, Vagbo CB, Bjoras M et al (2006) Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J 25:3389–3397

    Article  PubMed  CAS  Google Scholar 

  24. Lee DH, Jin SG, Cai S et al (2005) Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem Nov 25:39448–39459

    Article  Google Scholar 

  25. Massimino M, Gandola L, Giangaspero F et al (2004) Hyperfractionated radiotherapy and chemotherapy for childhood ependymoma: final results of the first prospective AIEOP (Associazione Italiana di Ematologia-Oncologia Pediatrica) study. Int J Radiat Oncol Biol Phys 58:1336–1345

    Article  PubMed  Google Scholar 

  26. De Sio L, Milano GM, Castellano A et al (2006) Temozolomide in resistant or relapsed pediatric solid tumors. Pediatr Blood Cancer 47:30–36

    Article  PubMed  Google Scholar 

  27. Chi SN, Gardner SL, Levy AS et al (2004) Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J Clin Oncol 15:4881–4887

    Article  Google Scholar 

  28. Massimino M, Gandola L, Luksch R et al (2005) Sequential chemotherapy, high-dose thiotepa, circulating progenitor cell rescue, and radiotherapy for childhood high-grade glioma. Neuro Oncol 7:41–48

    Article  PubMed  CAS  Google Scholar 

  29. Packer RJ, Lange B, Ater J et al (1993) Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol 11:850–856

    PubMed  CAS  Google Scholar 

  30. Gururangan S, Fisher MJ, Allen JC et al (2007) Temozolomide in children with progressive low-grade glioma. Neuro Oncol 9:161–168

    Article  PubMed  CAS  Google Scholar 

  31. Therasse P, Arbuk SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  32. Padhani AR, Ollivier L (2001) The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74:983–986

    PubMed  CAS  Google Scholar 

  33. Kataoka H, Yamamoto Y, Sekiguchi M (1983) A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J Bacteriol 153:1301–1307

    PubMed  CAS  Google Scholar 

  34. Sedgwick B, Lindahl T (2002) Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 21:8886–8894

    Article  PubMed  CAS  Google Scholar 

  35. Agris PF (1996) The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol 53:79–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Pasquale Tulimiero for his skilful technical assistance and to Dr. Elisabeth Wheeler (MA) for her language revision. This work was supported by a grant from Associazione Italiana per la Ricerca sul Cancro and Associazione Genitori contro le Leucemie e Tumori Infantili “NOI PER VOI”, “A. Meyer” Children’s Hospital, Florence, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Cetica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetica, V., Genitori, L., Giunti, L. et al. Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage. J Neurooncol 94, 195–201 (2009). https://doi.org/10.1007/s11060-009-9837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9837-0

Keywords

Navigation