Skip to main content
Log in

Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: Physicochemical properties, kinetic and thermodynamic aspects

  • Articles
  • Special Topic Extraction of Uranium from Seawater
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Amidoxime-based adsorbents are widely studied as the main adsorbent in the recovery of uranium from seawater. However, the adsorption rate and loading capacity of such adsorbents should be further improved due to the economic viability consideration. In this paper, polyvinyl alcohol functionalized with amidoxime (PVA-g-AO) has been prepared as a new adsorbent for uranium (VI) adsorption from aqueous solution. The physicochemical properties of PVA-g-AO were investigated using infrared spectroscopy (IR), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results showed that the ligand monomers were successfully grafted onto the matrixes. The XRD and XPS analysis showed that uranium was adsorbed in metal ionic form rather than in crystal form. Uranyl (U (VI)) adsorption properties onto PVA-g-AO were evaluated. The adsorption of U (VI) by PVA-g-AO was fast, with an equilibrium time of less than 50 min. Additionally the maximum adsorption capacity reached 42.84 mg/g at pH 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies RV, Dr Kennedy J, Mcilroy RW, Dr Spence R. Extraction of uranium from sea water. Nature, 1964, 203: 1110–1115

    Article  Google Scholar 

  2. Rao LF. Recent International R&D Activities in the Extraction of Uranium from Seawater. Lawrence Berkeley National Laboratory. 2011

    Google Scholar 

  3. Tamada M. Current Status of Technology for Collection of Uranium from Seawater. Japan Atomic Energy Agency, 2009

    Google Scholar 

  4. Gorden AEV, Xu JD, Raymond, KN. Rational design of sequestering agents for plutonium and other actinides. Chem Rev, 2003, 103: 4207–4282

    Article  CAS  Google Scholar 

  5. Xu J, Raymond KN. Uranyl sequestering agents: Correlation of properties and efficacy with structure for UO2 2+ complexes of linear tetradentate 1-methyl-3-hydroxy-2(1H)-pyridinone ligands. Inorg Chem, 1999, 38: 308–315

    Article  CAS  Google Scholar 

  6. Sather AC, Berryman OB, Rebek J Jr. Selective recognition and extraction of the uranyl ion. J Am Chem Soc, 2010, 132: 13572–13574

    Article  CAS  Google Scholar 

  7. Beer S, Berryman OB, Ajami D. Encapsulation of the uranyl dication. Chem Sci, 2010, 1: 43–47

    Article  CAS  Google Scholar 

  8. Yang JB, Volesky B. Modeling uranium-proton ion exchange in biosorption. Enviro Sci Technol, 1999, 33: 4079–4082

    Article  CAS  Google Scholar 

  9. Koide Y, Terasaki H, Sato H, Shosenji H, Yamada K. Flotation of uranium from seawater with phosphate esters of C-undecylcalix[4] resorcinarene. Bull Chem Soc Jpn, 1996, 69: 785–790

    Article  CAS  Google Scholar 

  10. Rivas BL, Maturana HA, Villegas S. Adsorption behavior of metal ions by amidoxime chelating resin. J Appl Polym Sci, 2000, 77: 1994–1999

    Article  CAS  Google Scholar 

  11. Pekel N, Şahiner N, Guven. O. Use of amidoximated acrylonitrile/N-vinyl 2-pyrrolidone interpenetrating polymer networks for uranyl ion adsorption from aqueous systems. J Appl Polym Sci, 2001, 81: 2324–2329

    Article  CAS  Google Scholar 

  12. Ozmen F, Kavakli PA. Removal of phosphate by using copper-loaded poly (N-vinylimidazole) hydrogels as polymeric ligand exchanger. J. Appl Polym Sci, 2011, 119: 613–619

    Article  CAS  Google Scholar 

  13. Çaykara T, Alaslan ŞŞ, İnam R. Competitive adsorption of uranyl ions in the presence of Pb (II) and Cd (II) ions by poly (glycidyl methacrylate) microbeads carrying amidoxime groups and polarographic determination. J Appl Polym Sci, 2007, 104: 4168–4172

    Article  Google Scholar 

  14. Çaykara T, Alaslan ŞŞ. Preparation and characterization of novel poly (glycidyl methacrylate) beads carrying amidoxime groups. J Appl Polym Sci, 2007, 106: 2126–2131

    Article  Google Scholar 

  15. Egawa H, Nakayama M, Nonaaka T, Yamamoto H, Uemura K. Recovery of uranium from seawater. V. Preparation and properties of the macroreticular chelating resins containing amidoxime and other functional groups. J Appl Polym Sci, 1987, 34: 1557–1575

    Article  CAS  Google Scholar 

  16. Egawa H, Kabay N, Shuto T, Jyo A. Recovery of uranium from sea water. XII. Preparation and characterization of lightly crosslinked highly porous chelating resins containing amidoxime groups. J Appl Polym Sci, 1992, 46: 129–142

    Article  CAS  Google Scholar 

  17. Egawa H, Nonaka T, Abe S, Nakayama M. Recovery of uranium from seawater. X. Pore structure and uranium adsorption of macroreticular chelating resin containing amidoxime groups. J Appl Polym Sci, 1992, 45: 837–841

    Article  CAS  Google Scholar 

  18. Kavaklı P A, Güven O. Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J Appl Polym Sci, 2004, 93: 1705–1710

    Article  Google Scholar 

  19. Çaykara T, Alaslan ŞŞ, Gürü M, Bodugöz H, Güvenc O. Preparation and characterization of poly(isobutyl methacrylate)microbeads with grafted amidoxime groups. Radiat Phys Chem, 2007, 76: 1569–1576

    Article  Google Scholar 

  20. Atta AM, Sayed SA, Farag AB. Ismail HS. Application of crosslinked acrylamidoxime/2-acrylamido-2-methylpropane sulfonic acid copolymer in wastewater treatment. J Dispersion Sci Tech, 2011, 32: 1285–1295

    Article  CAS  Google Scholar 

  21. Seko N, Ninh NTY, Tamada M. Elusion grafting of glycidyl methacrylate onto polyethylene fiber. Radiat Phys Chem, 2010, 79: 22–26

    Article  CAS  Google Scholar 

  22. Yao ZH, Rao L, Xu J. Synthesis of a new type of adsorbent containing carboxyl and amidoxime group by preirradiation grafting and its absorption of metal ions. J Appl Polym Sci, 2002, 83: 1986–1992

    Article  CAS  Google Scholar 

  23. Chi FT, Xiong J, Hou JW, Gu M, Hu S, Wang XL. Improvement in uranium adsorption properties of amidoxime-based adsorbent through cografting of amine group. J Disper Sci Tech, 2013, 34: 1–7

    Google Scholar 

  24. Bonato M, Allen GC, Scott TB. Reduction of U (VI) to U (IV) on the surface of TiO2 anatase nanotubes. Micro Nano Lett, 2008, 3: 57–61

    Article  CAS  Google Scholar 

  25. Scott TB, Allen GC, Heard PJ, Randell M. Reduction of U(VI) to U(IV) on the surface of magnetite. Geoch Cosmoch Acta, 2005, 69: 5639–5643

    Article  CAS  Google Scholar 

  26. Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF. High performance of phosphonate-functionalized mesoporous silica for U (VI) sorption from aqueous solution. Dalton Trans, 2011, 40: 7446–7453

    Article  CAS  Google Scholar 

  27. Lagergren S, Zur theorie der sogenannten adsorption geloester stoffe. Kungliga Svenska Vetenskapsakad, Handl, 1898, 24: 1–39

    Google Scholar 

  28. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem, 1999, 34: 451–465

    Article  CAS  Google Scholar 

  29. Boparai HK, Joseph MD, O’Carroll M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater, 2011, 186: 458–465

    Article  CAS  Google Scholar 

  30. Pillewan P, Mukherjee S, Roychowdhury T, Das S, Bansiwal A, Rayalu S. Removal of As(III) and As(V) from water by copper oxide incorporated mesoporous alumina. J Hazard Mater, 2011, 186: 367–375

    Article  CAS  Google Scholar 

  31. Freundlich H, Über die adsorption in lösungen (adsorption in solution). Z Phys Chem, 1906, 57: 384–470

    Google Scholar 

  32. Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physiochim URSS, 1940, 12: 217–222

    Google Scholar 

  33. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP. Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium (VI), Tanlata, 2005, 65: 192–200

    CAS  Google Scholar 

  34. Someda HH, Sheha RR. Solid phase extractive preconcentration of some actinide elements using impregnated carbon. Radiochem, 2008, 50: 50–56

    Article  Google Scholar 

  35. Starvin AM, Rao TP. Solid phase extractive preconcentration of uranium (VI) onto diarylazobisphenol modified activated carbon. Talanta, 2004, 63: 225–232

    Article  CAS  Google Scholar 

  36. Merdivan M, Düz MZ, Hamamci C. Sorption behavior of uranium (VI) with N,N-dibutyl-N′-benzoylthiourea impregnated in Amberlite XAD-16. Talanta, 2001, 55: 639–645

    Article  CAS  Google Scholar 

  37. Merdivan M, Seyhan S, Gok C. Use of benzoylthiourea immobilized on silica gel for separation and preconcentration of uranium (VI). Microch Acta, 2006, 154: 109–114

    Article  CAS  Google Scholar 

  38. Kim JH, Lee HI, Yeon JW, Jung YJ, Kim JM. Removal of uranium (VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem, 2010, 286: 129–133

    Article  CAS  Google Scholar 

  39. Venkatesan KA, Sukumaran V, Antony MP, Rao PRV. Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem, 2010, 260: 443–450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoLin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, F., Hu, S., Xiong, J. et al. Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: Physicochemical properties, kinetic and thermodynamic aspects. Sci. China Chem. 56, 1495–1503 (2013). https://doi.org/10.1007/s11426-013-5003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5003-9

Keywords

Navigation