Skip to main content
Log in

Theoretical studies on the complexation of uranyl with typical carboxylate and amidoximate ligands

  • Articles
  • Special Topic Extraction of Uranium from Seawater
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Understanding of the bonding nature of uranyl and various ligands is the key for designing robust sequestering agents for uranium extraction from seawater. In this paper thermodynamic properties related to the complexation reaction of uranyl(VI) in aqueous solution (i.e. existing in the form of UO2(H2O)5 2+) by several typical ligands (L) including acetate (CH3CO2 ), bicarbonate (HOCO2 ), carbonate (CO3 2−), CH3(NH2)CNO (acetamidoximate, AO) and glutarimidedioximate (denoted as GDO2−) have been investigated by using relativistic density functional theory (DFT). The geometries, vibrational frequencies, natural net charges, and bond orders of the formed uranyl-L complexes in aqueous solution are studied. Based on the DFT analysis we show that the binding interaction between uranyl and amidoximate ligand is the strongest among the selected complexes. The thermodynamics of the complexation reaction are examined, and the calculated results show that complexation of uranyl with amidoximate ligands is most preferred thermodynamically. Besides, reaction paths of the substitution complexation of solvated uranyl by acetate and AO have been studied, respectively. We have obtained two minima along the reaction path of solvated uranyl with acetate, the monodentate-acetate complex and the bidentate-acetate one, while only one minimum involving monodentate-AO complex has been located for AO ligand. Comparing the energy barriers of the two reaction paths, we find that complexation of uranyl with AO is more difficult in kinetics, though it is more preferable in thermodynamics. These results show that theoretical studies can help to select efficient ligands with fine-tuned thermodynamic and kinetic properties for binding uranyl in seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies RV, Kennedy J, McIlroy RW, Spence R, Hill KM. Extraction of uranium from sea water. Nature, 1964, 203: 1110–1115

    Article  Google Scholar 

  2. OECD. Uranium 2009: Resources, Production and Demand. OECD NEA Publication 6891. 2010, 456

    Google Scholar 

  3. Sodaye H, Nisan S, Poletiko C, Prabhakar S, Tewari PK. Extraction of uranium from the concentrated brine rejected by integrated. Desalination, 2009, (235): 9–32

    Article  CAS  Google Scholar 

  4. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D. Recovery of uranium from seawater: A review of current status and future research needs. Separ Sci Technol, 2013, 48: 367–387

    Article  CAS  Google Scholar 

  5. Shimizu T, Tamada M. Practical scale system for uranium recovery from seawater using braid type adsorbent. Proceed Civil Engin Ocean, 2004, 20: 617–622

    Article  Google Scholar 

  6. Tamada M, Seko N, Kasai N, Shimizu T. Cost estimation of uranium recovery from seawater with system of braid type adsorbent. Transact Atomic Energy Soc Japan, 2006, 5: 358–363

    CAS  Google Scholar 

  7. Wazne M, Meng X, Korfiatis GP, Christodoulatos C. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide. J Hazar Mater, 2006, 136: 47–52

    Article  CAS  Google Scholar 

  8. Muzzarelli RAA. Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review. Carbohyd Polym, 2011, 84: 54–63

    Article  CAS  Google Scholar 

  9. Manos MJ, Kanatzidis MG. Layered metal sulfides capture uranium from seawater. J Am Chem Soc, 2012, 134: 16441–16446

    Article  CAS  Google Scholar 

  10. Acharya C, Chandwadkar P, Joseph D, Apte SK. Uranium (VI) recovery from saline environment by a marine unicellular cyanobacterium, Synechococcus elongates. Radioanal Nucl Chem, 2013, 295: 845–850

    Article  CAS  Google Scholar 

  11. Das S, Pandey AK, Athawale AA, Subramanian M, Seshagiri TK, Khanna PK, Manchanda VK. Silver nanoparticles embedded polymer sorbent for preconcentration of uraniumfrom bio-aggressive aqueous media. J Hazard Mater 2011, 186: 2051–2059

    Article  CAS  Google Scholar 

  12. Cao Q, Huang F, Zhuang Z, Lin Z. A study of the potential application of nano-Mg(OH)2 in adsorbing lowconcentrations of uranyltricarbonate from water. Nanoscale, 2012, 4: 2423–2430

    Article  CAS  Google Scholar 

  13. Vukovic S, Watson L A, Kang SO, Custelcean R, Hay BP. How amidoximate binds the uranyl cation. Inorg Chem, 2012, 51: 3855–3859

    Article  CAS  Google Scholar 

  14. Tian G, Teat SJ, Zhang Z, Rao L. Sequestering uranium from seawater: Binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Trans, 2012, 41: 11579–11586

    Article  CAS  Google Scholar 

  15. Chi FT, Li P, Xiong J, Hu S, Gao T, Xia XL, Wang XL. Density functional study of uranyl(VI) amidoxime complexes. Chin Phys B, 2012, 21: 093102

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010

    Google Scholar 

  17. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  19. Dolg M. Energy-consistent Pseudopotentials of the Stuttgart/Cologne Group. http://www.tc.uni-koeln.de/PP/clickpse.en.html. 2013-05-01

  20. Cao X, Dolg M, Stoll H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys, 2003, 118: 487–496

    Article  CAS  Google Scholar 

  21. Cao X, Dolg M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Molec Struct (THEOCHEM), 2004, 673: 203–209

    Article  CAS  Google Scholar 

  22. Dunning TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys, 1989, 90: 1007–1023

    Article  CAS  Google Scholar 

  23. Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans, 1993, 2: 799–805

    Google Scholar 

  24. Pye CC, Ziegler T. An implementation of the conductorlike screening model (COSMO) of solvation within the Amsterdam density functional (ADF) package. Theor Chem Acc, 1999, 101: 396–408

    Article  CAS  Google Scholar 

  25. Weinhold F, Landis CR. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press, 2005

    Chapter  Google Scholar 

  26. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F. NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004; http://www.chem.wisc.edu/nbo5. 2013-05-01

    Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  28. See http://www.scm.com for ADF 2010.02, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands

  29. Guerra CF, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor Chem Acc, 1998, 99: 391–403

    CAS  Google Scholar 

  30. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T. Chemistry with ADF. J Comput Chem, 2001, 22: 931–967

    Article  Google Scholar 

  31. van Lenthe E, Baerends EJ. Optimized Slater-type basis sets for the elements 1-118. J Comput Chem, 2003, 24: 1142–1156

    Article  Google Scholar 

  32. van lenthe E, Baerends EJ, Snijders JG. Relativistic regular two-component Hamiltonians. J Chem Phys, 1993, 99: 4597–4610

    Article  Google Scholar 

  33. Neuefeind J, Soderholm L, Skanthakumar S. Experimental electron densities of aqueous uranyl(VI) solutions. J Phys Chem A, 2004, 108, 2733s

    Article  Google Scholar 

  34. Ikeda-Ohno A, Hennig C, Tsushima S, Scheinost A C, Bernhard G, Yaita T. Speciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions. Inorg Chem, 2009, 48: 7201–7210

    Article  CAS  Google Scholar 

  35. Vallet V, Wahlgren U, Schimmelpfennig B, Moll H, Szabo Z, Grenthe I. Solvent effects on uranium (VI) fluoride and hydroxide complexes studied by EXAFS and quantum chemistry. Inorg Chem, 2001, 40: 3516–3525

    Article  CAS  Google Scholar 

  36. Su J, Zhang K, Schwarz WHE, Li J. Uranyl-glycine-water complexes in solution: Comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties. Inorg Chem, 2011, 50: 2082–2093

    Article  CAS  Google Scholar 

  37. Ray RS, Krüger S, Rösch N. Uranyl monocarboxylates of aromatic acids: A density functional model study of uranyl-humate complexation. Dalton Trans, 2009: 3590-3589

  38. Denning RG. Electronic structure and bonding in actinyl ions. Struct. Bonding (Berlin), 1992, 79: 215–276

    Article  CAS  Google Scholar 

  39. Denning RG. Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A, 2007, 111: 4125–4143

    Article  CAS  Google Scholar 

  40. Su J, Wang YL, Wei F, Schwarz WHE, Li J. Theoretical study of the luminescent states and electronic spectra of UO2Cl2 in an argon matrix. J Chem Theory Comput, 2011,7: 3293-3303

    Google Scholar 

  41. Schlosser F, Krüger S, Rösch N. A density functional study of uranyl monocarboxylates. Inorg Chem, 2006, 45: 1480–1490

    Article  CAS  Google Scholar 

  42. Shamov GA, Schreckenbach G. Density functional studies of actinylaquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method. J Phys Chem A, 2005, 109: 10961–10974

    Article  CAS  Google Scholar 

  43. Sundararajan M, Sinha V, Bandyopadhyay T, Ghosh SK. Can functionalized cucurbituril bind actinylcations efficiently? A density functional theory based investigation. J Phys Chem A, 2012, 116: 4388–4395

    Article  CAS  Google Scholar 

  44. Denecke MA, Reich T, Bubner M, Pompe S, Heise KH, Nitsche H, Allen PG, Bucher JJ, Edelstein NM, Shuh DK. Determination of structural parameters of uranyl ions complexed with organic acids using EXAFS. J Alloys Compd, 1998: 271-273: 123–127

    Article  CAS  Google Scholar 

  45. Denecke MA, Pompe S, Reich T, Moll H, Bubner M, Heise KH, Nicolai R, Nitsche H. Measurements of the structural parameters for the interaction of uranium (VI) with natural and synthetic humic acids using EXAFS. Radiochim Acta, 1997, 79: 151–159

    CAS  Google Scholar 

  46. Denecke MA. Actinide speciation using X-ray absorption fine structure spectroscopy. Coord Chem Rev, 2006, 250: 730–754

    Article  CAS  Google Scholar 

  47. Jiang J, Rao L, Di Bernardo P, Zanonato PL, Bismondo A. Complexation of uranium(VI) with acetate at variable temperatures. J Chem Soc, Dalton Trans, 2002, 8: 1832–1838

    Article  Google Scholar 

  48. Moll H, Geipel G, Reich T, Bernhard G, Fanghänel T, Grenthe I. Uranyl(VI) complexes with alpha-substituted carboxylic acids in aqueous solution. Radiochim Acta, 2003, 91, 11-20

  49. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Reich T. Investigation of aquo and chloro complexes of UO2 2+, NpO2 +, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg Chem, 1997, 36: 4676–4683

    Article  CAS  Google Scholar 

  50. Su J, Dau P D, Qiu YH, Liu HT, Xu CF, Huang DL, Wang LS, Li J. Probing the electronic structure and chemical bonding in tricoordinate uranyl complexes UO2X3 (X = F, Cl, Br, I): competition between coulomb repulsion and U-X bonding. Inorg Chem, 2013, 52: 6617–6626

    Article  CAS  Google Scholar 

  51. Su J, Dau PD, Xu CF, Huang DL, Liu HT, Wei F, Wang LS, Li J. A joint photoelectron spectroscopy and theoretical study on the electronic structure of UCl5 and UCl5. Chem Asian J, 2013, 8: 2489–2496

    Article  CAS  Google Scholar 

  52. Michalak A, DeKock RL, Ziegler T. Bond multiplicity in transitionmetal complexes: applications of two-electron valence indices. J Phys Chem A, 2008, 112: 7256–7263

    Article  CAS  Google Scholar 

  53. Mayer I. Charge, bond order and valence in the ab initio SCF theory. Chem Phys Lett, 1983, 97: 270–274

    Article  CAS  Google Scholar 

  54. Gopinathan MS, Jug K. Valency. I. A quantum chemical definition and properties. Theor Chim Acta, 1983, 63: 497–509

    CAS  Google Scholar 

  55. Kremleva A, Krüger S, Rösch N. Role of aliphatic and phenolic hydroxyl groups in uranyl complexationby humic substances. Inorg Chem Acta, 2009, 362: 2542–2550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Su or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Su, J., Xu, X. et al. Theoretical studies on the complexation of uranyl with typical carboxylate and amidoximate ligands. Sci. China Chem. 56, 1525–1532 (2013). https://doi.org/10.1007/s11426-013-4994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4994-6

Keywords

Navigation