Skip to main content

Electronic structure and bonding in actinyl ions

  • Chapter
  • First Online:
Complexes, Clusters and Crystal Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 79))

Abstract

The actinyl ions exhibit an unusually robust covalent bond which has a profound influence on their chemistry. Their electronic structure has been unravelled by the use of a variety of optical measurements and by photoelectron spectroscopy, which together establish the composition and role of the valence orbitals. The experimental energy level scheme can be compared with the results of molecular orbital calculations of varying degrees of sophistication, the most successful being SCF calculations incorporating the effects of relativity. An important contribution to the bonding comes from the pseudo-core 6p shell, which is important in determining the linearity of the ions. A new concept, the Inverse trans Influence, is introduced in this context. There is some evidence that (d-orbital π-bonding is more important than σ-bonding. The remarkable strength of the actinyl bond can be attributed to the presence in the valence shell of both f and d metal orbitals, giving each actinide-oxygen bond a formal bond order of three.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Streitweiser A (1979) in: Marks TJ, Fischer RD (eds) Organometallics of the f-elements, Reidel, Dordrecht

    Google Scholar 

  2. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinide elements, 2nd edn, Chapman and Hall

    Google Scholar 

  3. Wait E (1955) J Inorg Nucl Chem 1: 309; Weller MT, Dickens PG, Penny DJ (1988) Polyhedron 7: 243

    Google Scholar 

  4. Bleijenberg KC (1980) Struct and Bonding, 42: 97; Blasse G (1976) Struct and Bonding 26: 43; Blasse G (1980) ibid 42: 1

    Google Scholar 

  5. Dickens PG, Lawrence SD, Penny DJ, Powell AV (1989) Sol Stat Ionics 32/33: 77

    Google Scholar 

  6. Cordfunke EHP, Ouweltjes W (1981) J Chem Thermodyn 13: 187

    Google Scholar 

  7. Siegel S, Hoekstra HR (1971) Inorg Nucl Chem Lett 7: 455

    Google Scholar 

  8. Kolitsch W, Müller U (1979) Z Anorg Allgem Chem 410: 21

    Google Scholar 

  9. Day JP, Venanzi LM (1966) J Chem Soc (A) 1363

    Google Scholar 

  10. Sylva RN, Davidson MR (1979) J Chem Soc Dalton Trans 3: 465

    Google Scholar 

  11. Toth LM, Begun GM (1981) J Phys Chem 85: 547

    Google Scholar 

  12. Taylor JC (1971) Acta Cryst B 27: 1088

    Google Scholar 

  13. Reis AH, Hoekstra HR, Gebert E, Peterson SW (1976) J Inorg Nucl Chem 38: 1481

    Google Scholar 

  14. Greaves C, Fender BEF, Fender (1972) Acta Cryst B28: 3609

    Google Scholar 

  15. Denning RG (1983) In: Gmelin Handbook, Uranium A6: 31

    Google Scholar 

  16. Bombieri G, Forsellini E, Day JP, Azeez WI (1978) J Chem Soc Dalton Trans 677

    Google Scholar 

  17. Butcher RJ, Penfold BR, Sinn E (1979) J Chem Soc Dalton Trans 668

    Google Scholar 

  18. Glidewell C (1977) Inorg Chim Acta 24: 149

    Google Scholar 

  19. Gordon G, Taube H (1961) J Inorg Nucl Chem 19: 189

    Google Scholar 

  20. Findlay JR, Glover KM, Jenkins IL, Large NR, Marples JAC, Potter PE, Sutcliffe PW (1977) In: Thompson R (ed) The modern inorganic chemicals industry, The Chemical Society, Spec Pub 31, London

    Google Scholar 

  21. Thorne JRG, Denning RG, Barker TJ, Grimley DI (1985) J Lumin 34: 147; Sugitani Y, Nomura H, Nagashima K (1980) Bull Chem Soc Japan 53: 2677

    Google Scholar 

  22. Rabinowitch E, Belford RL (1964) Spectroscopy and photochemistry of uranyl compounds, Mcmillan, New York; Burrows HD, Kemp TJ (1974) Chem Soc Rev 3: 139

    Google Scholar 

  23. JØrgensen CK, Reisfeld R (1982) Struct and Bonding 50: 121

    Google Scholar 

  24. JØrgensen CK (1957) Acta Chem Scand 11: 166

    Google Scholar 

  25. McGlynn SP, Smith JK (1961) J Mol Spect 6: 164

    Google Scholar 

  26. Gorller-Walrand C, VanQuickenborne LG (1972) Spectrochim Acta A 28: 257; idem (1971) J Chem Phys 54: 4178

    Google Scholar 

  27. Dieke GH, Duncan ABF (1949) Spectroscopic properties of uranium compounds, McGraw-Hill, New York

    Google Scholar 

  28. McClure DS (private communication)

    Google Scholar 

  29. Denning RG, Snellgrove TR, Woodwark DR (1976) Mol Phys 32: 419

    Google Scholar 

  30. Hall D, Rae AD, Walters TN (1966) Acta Cryst 20: 160

    Google Scholar 

  31. Denning RG, Snellgrove TR, Woodwark DR (1975) Mol Phys 30: 1819

    Google Scholar 

  32. Denning RG, Snellgrove TR, Woodwark DR (1979) Mol Phys 37: 1109

    Google Scholar 

  33. Gorller-Walrand C, VanQuickenborne LG (1972) J Chem Phys 57: 1436

    Google Scholar 

  34. Denning RG, Foster DNP, Snellgrove TR, Woodwark DR (1979) Mol Phys 37: 1089

    Google Scholar 

  35. Denning RG, Short IG, Woodwark DR (1980) Mol Phys 39: 1281

    Google Scholar 

  36. Gruen DM, Hutchinson CA (1954) J Chem Phys 22: 386; McGlynn SP, Smith JK (1961) J Mol Spectrosc 6: 188

    Google Scholar 

  37. Bleaney B, Llewellyn PM, Pryce MHL, Hall GR (1954) Phil Mag 45: 992; Bleaney B (1955) Disc Faraday Soc 19: 112

    Google Scholar 

  38. Denning RG, Norris JOW, Brown D (1982) Mol Phys 46: 287

    Google Scholar 

  39. Denning RG, Norris JOW, Brown D (1982) Mol Phys 46: 325

    Google Scholar 

  40. Barker TJ, Denning RG, Thorne JRG (1987) Inorg Chem 26: 1721

    Google Scholar 

  41. Barker TJ (1990) D Phil Thesis, Oxford

    Google Scholar 

  42. Abramova IN, Abramov AP, Tolstoy NA (1969) Opt Spectrosc 27: 293

    Google Scholar 

  43. Allen DM, Burrows HD, Cox A, Hill RJ, Kemp TJ, Stone TJ (1973) J Chem Soc Chem Comm 59; Sergeeva G, Chibisov A, Levshin L, Karyakin A (1974) J Chem Soc Chem Comm 159; Burrows HD (1990) Inorg Chem 29: 1549

    Google Scholar 

  44. Denning RG, Morrison ID (unpublished)

    Google Scholar 

  45. Fragala I, Condorelli G, Tondello A, Cassol A (1978) Inorg Chem 17: 3175

    Google Scholar 

  46. Allen GC, Baerends EJ, Vernooijs P, Dyke JM, Ellis AM, Feher M, Morris A (1988) J Chem Phys 89: 5363

    Google Scholar 

  47. Rauh EG, Ackerman RJ (1974) J Chem Phys 60: 1396

    Google Scholar 

  48. Veal BW, Lam DJ, Carnall WT, Hoekstra HR (1975) Phys Rev B12: 5651

    Google Scholar 

  49. Desclaux JP (1973) At Data Nucl Data Tables 12: 311

    Google Scholar 

  50. Teterin YA, Baev AS, Mashirov LG, Suglobov DN (1984) Dokl (Phys Chem) 277: 131

    Google Scholar 

  51. Larsson S, Pyykkö P (1986) Chem Phys 101: 355

    Google Scholar 

  52. Dunlap BD, Kalvius GM (1974) in: Freeman AJ, Darby JB (eds) The actinides, electronic structure and related properties, Vol I, Academic Press, New York

    Google Scholar 

  53. Evans S, Hamnett A, Orchard AF (1972) J Coord Chem 2: 57

    Google Scholar 

  54. Pyykkö P (1987) Inorg Chim Acta 139: 243

    Google Scholar 

  55. Belford RL, Belford G (1961) J Chem Phys 34: 1330

    Google Scholar 

  56. Newman JB (1965) J Chem Phys 43: 1691

    Google Scholar 

  57. Johnson KH (1973) Adv Quant Chem 7: 143

    Google Scholar 

  58. Rösch N, Klemperer WG, Johnson KH (1973) Chem Phys Lett 23: 149

    Google Scholar 

  59. Boring M, Wood JH, Moscowitz JW (1975) J Chem Phys 63: 638

    Google Scholar 

  60. Hay PJ, Wadt WR, Kahn LR, Raffenetti RC, Phillips DH (1979) J Chem Phys 71: 1767

    Google Scholar 

  61. Yang CY, Johnson KH, Horsley JA (1978) J Chem Phys 68: 1000

    Google Scholar 

  62. Boring M, Wood JH (1979) J Chem Phys 71: 392

    Google Scholar 

  63. Cowan RD, Griffin DC (1976) J Opt Soc Am 66: 1010

    Google Scholar 

  64. Wood JH, Boring M, Woodruff SB (1981) J Chem Phys 74: 5225

    Google Scholar 

  65. Rosen A, Ellis DE, Adachi H, Averill FW (1976) J Chem Phys 65: 3629

    Google Scholar 

  66. Ellis DE, Rosen A, Walch PF (1975) Int J Quantum Chem Symp 9: 351

    Google Scholar 

  67. Walch PF, Ellis DE (1976) J Chem Phys 65: 2387

    Google Scholar 

  68. Slater JC (1974) The self-consistent field for molecules and solids, McGraw-Hill, New York

    Google Scholar 

  69. Roby KR (1974) Mol Phys 47: 81

    Google Scholar 

  70. Ellis DE (private communication, quoted in Ref. [64](

    Google Scholar 

  71. Snijders JG, Baerends EJ, Ros P (1979) Mol Phys 38: 1909

    Google Scholar 

  72. DeKock RL, Baerends EJ, Boerrigter PM, Snijders JG (1984) Chem Phys Lett 105: 308

    Google Scholar 

  73. Wadt WR (1981) J Am Chem Soc 103: 6053

    Google Scholar 

  74. Gabelnik SD, Reedy GT, Chasonov MD (1974) Chem Phys 60: 1167

    Google Scholar 

  75. Tatsumi K, Hoffmann R (1980) Inorg Chem 19: 2656

    Google Scholar 

  76. Pyykkö P, Lohr LL (1981) Inorg Chem 20: 1950; Pyykkö P, Laaksonen L (1984) J Phys Chem 88: 4892

    Google Scholar 

  77. Fenske RF, DeKock RL (1970) Inorg Chem 9: 1053

    Google Scholar 

  78. Citrin PH, Thomas TD (1972) J Chem Phys 57: 4446

    Google Scholar 

  79. Denning RG (unpublished)

    Google Scholar 

  80. Choppin GR, Rao LF (1984) Radiochim Acta 37: 143

    Google Scholar 

  81. Burdett JK (1980) Molecular shapes, Wiley, New York, p 90

    Google Scholar 

  82. Woodwark DR (1977) D Phil Thesis, Oxford

    Google Scholar 

  83. Nugent WA, Mayer JA (1988) Metal ligand multiple bonds, Wiley, New York, p 156; Appleton TG, Clark HC, Manzer LE (1973) Coord Chem Rev 10: 335

    Google Scholar 

  84. De Wet JF, Du Preez JGH (1978) J Chem Soc Dalton Trans 592

    Google Scholar 

  85. Tordjman I, Masse R, Guitel JC (1974) Z Kristall 139: 103

    Google Scholar 

  86. Phillips MLF, Harrison WTA, Stucky GD (1990) Inorg Chem 29: 3245; Thomas PA, Glazer AM, Watts BE (1990) Acta Cryst B46: 333

    Google Scholar 

  87. Griffith WP (1962) J Chem Soc 3248; Griffith WP (1964) J Chem Soc 245; Griffith WP (1969) J Chem Soc (A) 211

    Google Scholar 

  88. Bader RFW (1960) Mol Phys 3: 137

    Google Scholar 

  89. Burdett JK (1980) Molecular shapes. Wiley, New York, p 64

    Google Scholar 

  90. Jones LH (1959) Spectrochim Acta 15: 409

    Google Scholar 

  91. Bartlett JR, Cooney RP (1989) J Mol Struct 193: 295

    Google Scholar 

  92. Alcock NW (1968) J Chem Soc (A) 1588

    Google Scholar 

  93. Adrian HWW, Van Tets A (1978) Acta Cryst B34: 88; Adrian HWW, Van Tets A (1977) Acta Cryst B33: 2997

    Google Scholar 

  94. Moore CE (1958) Circ US Nat Bur Stand, Vol III

    Google Scholar 

  95. Jortner J, Rice SA, Hochstrasser RM (1969) Adv Photochem 7: 149; Riseberg LA, Moos HW (1968) Phys Rev 174: 429

    Google Scholar 

  96. Ryan JL (1971) J Inorg Nucl Chem 33: 153; Selbin J, Ballhausen CJ, Durrett DG (1972) Inorg Chem 11: 510

    Google Scholar 

  97. Marcantonatos MD (1978) Inorg Chim Acta 26: 41

    Google Scholar 

  98. Taylor JC, Wilson PW (1974) Acta Cryst B30: 1481

    Google Scholar 

  99. Shamir J, Silberstein A, Ferraro J, Choca M (1975) J Inorg Nucl Chem 37: 1429

    Google Scholar 

  100. Müller U, Kolitsch W (1974) Z Anorg Chem 410: 32

    Google Scholar 

  101. Kolitsch W, Müller U (1975) Z Anorg Chem 418: 235

    Google Scholar 

  102. De Wet JF, Caira MR, Gellatly BJ (1978) Acta Cryst B34: 1121

    Google Scholar 

  103. Bombieri G, Brown D, Mealli C (1976) J Chem Soc Dalton Trans 2025

    Google Scholar 

  104. Schleid T, Meyer G, Morss LR (1987) J Less-Common Met 132: 69

    Google Scholar 

  105. Brown D (1966) J Chem Soc (A) 766

    Google Scholar 

  106. Aurov NA, Volkov VA, Chirkst DE (1983) Radiokhimiya 25: 366

    Google Scholar 

  107. Amberger H-D, Rosenbauer GG, Fischer RD (1976) Mol Phys 32: 1291

    Google Scholar 

  108. Barnard R, Bullock JI, Gellatly BJ, Larkworthy LF (1972) J Chem Soc Dalton Trans 1932

    Google Scholar 

  109. Shannon RD, Prewitt CT (1969) Acta Cryst B25: 787

    Google Scholar 

  110. Bois C, Dao N-Q, Rodier N (1976) Acta Cryst B32: 1541

    Google Scholar 

  111. Bagnall KW, du Preez JGH, Gellatly BJ, Holloway JH (1975) J Chem Soc Dalton Trans 1963

    Google Scholar 

  112. Furrer A, Güdel HU, Darriet J (1985) J Less-Common Met 111: 223

    Google Scholar 

  113. Crosswhite HM, Crosswhite H, Carnall WT, Paszck AP (1980) J Chem Phys 72: 5103

    Google Scholar 

  114. Wagner W, Edelstein N, Whittaker B, Brown D (1977) Inorg Chem 16: 1021

    Google Scholar 

  115. Johnston DR, Satten RA, Schreiber CL, Wong EY (1976) J Chem Phys 44: 3141

    Google Scholar 

  116. Edelstein N, Brown D, Whittaker B (1974) Inorg Chem 13: 563

    Google Scholar 

  117. Pinsker GZ (1967) Sov Phys Crystall 11: 634

    Google Scholar 

  118. Grosjean D, Weiss R (1967) Bull Chem Soc France 3054

    Google Scholar 

  119. Müller U, Lorenz I (1980) Z Anorg Allg Chem 463: 110

    Google Scholar 

  120. Drew MGB, Fowles GWA, Page EM, Rice DA (1981) J Chem Soc Dalton Trans 2409

    Google Scholar 

  121. Kamenar B, Prout CK (1970) J Chem Soc (A) 2379

    Google Scholar 

  122. Carrondo MAA de CT, Shahir R, Skapsi AC (1978) J Chem Soc Dalton Trans 844

    Google Scholar 

  123. Bright D, Ibers JA (1967) Inorg Chem 8: 709

    Google Scholar 

  124. Brown D, Reynolds CT, Moseley PT (1972) J Chem Soc Dalton Trans 857

    Google Scholar 

  125. Denning RG, Ironside CN, Thorne JRG, Woodwark DR (1981) Mol Phys 44: 209

    Google Scholar 

  126. Lam RUE'T, Blasse G (1980) J Inorg Nucl Chem 42: 1377

    Google Scholar 

  127. Brittain HG, Perry DL (1981) J Phys Chem 85: 3073

    Google Scholar 

  128. Smit WMA, Blasse G (1984) J Lumin 31: 114

    Google Scholar 

  129. Softley TP (1981) Part II Thesis, Oxford

    Google Scholar 

  130. Flint CD, Tanner PA (1981) Mol Phys 43: 933

    Google Scholar 

  131. Denning RG, Ironside CN, Snellgrove TR, Stone PJ (1982) J Chem Soc Dalton Trans 1691

    Google Scholar 

  132. Brittain HG, Tsao L, Perry DL (1984) J Lumin 29: 285; Anderson A, Cheih C, Irish DE, Tong JPK (1980) Can J Chem 58: 1651

    Google Scholar 

  133. Leung AF, Tsang KK (1979) J Phys Chem Solids 40: 1093; McGlynn SP, Smith JK, Neely WC (1961) J Chem Phys 35: 105

    Google Scholar 

  134. Flint CD, Sharma P, Tanner PA (1982) J Phys Chem 86: 1921

    Google Scholar 

  135. Flint CD, Tanner PA (1981) Inorg Chem 20: 4405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Denning, R.G. (1992). Electronic structure and bonding in actinyl ions. In: Complexes, Clusters and Crystal Chemistry. Structure and Bonding, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036502

Download citation

  • DOI: https://doi.org/10.1007/BFb0036502

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55095-2

  • Online ISBN: 978-3-540-46694-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics