Skip to main content
Log in

Wide range temperature detection with hybrid nanoparticles traced by surface-enhanced Raman scattering

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report on the fabrication of a class of surface-enhanced Raman scattering (SERS) active thermometers, which consists of 60 nm gold nanoparticles, encoded with Raman-active dyes, and a layer of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush with different chain lengths. These SERS-active nanoparticles can be optimized to maintain spectrally silent when staying as single particles in dispersion. Increasing temperature in a wide range from 25 °C to 55 °C can reversibly induce the interparticle self-aggregation and turn on the SERS fingerprint signals with up to 58-fold of enhancement by taking advantage of the interparticle plasmonic coupling generated in the process of thermo-induced nanoparticles self-aggregation. Moreover, the most significative point is that these SERS probes could maintain their response to temperature and present all fingerprint signals in the presence of a colored complex. However, the UV-vis spectra can distinguish the differences faintly and the solution color shows little change in such complex mixture. This proof-of-concept and Raman technique applied here allow for dynamic SERS platform for onsite temperature detection in a wide temperature range and offer unique advantages over other detection schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. Thermotaxis of mammalian sperm cells: A potential navigation mechanism in the female genital tract. Nat Med, 2003, 9: 149–150

    Article  CAS  Google Scholar 

  2. Warner DA, Shine R. The adaptive significance of temperature-dependent sex determination in a reptile. Nature, 2008, 451: 566–568

    Article  CAS  Google Scholar 

  3. Vetrone F, Naccache R, Zamarron A, de la Fuente AJ, Sanz-Rodriguez F, Maestro LM, Rodriguez EM, Jaque D, Sole JG, Capobianco JA. Temperature sensing using fluorescent nanothermometers. ACS Nano, 2010, 4: 3254–3258

    Article  CAS  Google Scholar 

  4. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci, 2004, 29: 1173–1222

    Article  CAS  Google Scholar 

  5. Freddi S, Sironi L, D’Antuono R, Morone D, Donà A, Cabrini E, D’Alfonso L, Collini M, Pallavicini P, Baldi G, Maggioni D, Chirico GA. Molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett, 2013, 13: 2004–2010

    Article  CAS  Google Scholar 

  6. Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc, 2009, 131: 2766–2767

    Article  CAS  Google Scholar 

  7. Pietsch C, Schubert US, Hoogenboom R. Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. Chem Commun, 2011, 47: 8750–8765

    Article  CAS  Google Scholar 

  8. Chen CY, Chen CT. A PNIPAM-based fluorescent nanothermometer with ratiometric readout. Chem Commun, 2011, 47: 994–996

    Article  CAS  Google Scholar 

  9. Peng HS, Stich MIJ, Yu JB, Sun LN, Fischer LH, Wolfbeis OS. Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv Mater, 2010, 22: 716–719

    Article  CAS  Google Scholar 

  10. Ye FM, Wu CF, Jin YH, Chan YH, Zhang XJ, Chiu DT. Ratiometric temperature sensing with semiconducting polymer dots. J Am Chem Soc, 2011, 133: 8146–8149

    Article  CAS  Google Scholar 

  11. Albers AE, Chan EM, McBride PM, Ajo-Franklin CM, Cohen BE, Helms BA. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J Am Chem Soc, 2012, 134: 9565–9568

    Article  CAS  Google Scholar 

  12. Donner JS, Thompson SA, Kreuzer MP, Baffou G, Quidant R. Mapping intracellular temperature using green fluorescent protein. Nano Lett, 2012, 12: 2107–2111

    Article  CAS  Google Scholar 

  13. Yin J, Hu HB, Wu YH, Liu SY. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels. Polym Chem, 2011, 2: 363–371

    Article  CAS  Google Scholar 

  14. Yin J, Li CH, Wang D, Liu SY. FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropy-lacrylamide) microgels labeled with crown ether moieties. J Phys Chem B, 2010, 114: 12213–12220

    Article  CAS  Google Scholar 

  15. Cho EC, Kim YD, Cho K. Thermally responsive poly (N-isopropylacrylamide) monolayer on gold: Synthesis, surface characterization, and protein interaction/adsorption studies. Polymer, 2004, 45: 3195–3204

    Article  CAS  Google Scholar 

  16. Li Z, Xiong D, Xu B. Wu CL, An YL, Ma RJ, Shi LQ. Fabrication of an asymmetric hollow particle with a thermo-sensitive PNIPAM inside corona. Polymer, 2009, 50: 825–831

    Article  CAS  Google Scholar 

  17. Qiao J, Qi L, Shen Y, Zhao LZ, Qi C, Shangguan DH, Mao LQ, Chen Y. Thermal responsive fluorescent block copolymer for intracellular temperature sensing. J Mater Chem, 2012, 22: 11543–11549

    Article  CAS  Google Scholar 

  18. Tang L, Jin JK, Qin AJ, Yuan WZ, Mao Y, Mei J, Sun JZ, Tang BZ. A fluorescent thermometer operating in aggregation-induced emission mechanism: Probing thermal transitions of PNIPAM in water. Chem Commun, 2009, 4974–4976

    Google Scholar 

  19. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun, 2012, 3: 705

    Article  Google Scholar 

  20. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol, 2005, 23: 741–745

    Article  Google Scholar 

  21. Jun YW, Sheikholeslami S, Hostetter DR, Tajon C, Craik CS, Alivisatos AP. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proc Natl Acad Sci USA, 2009, 106: 17735–17740

    Article  CAS  Google Scholar 

  22. Freye CE, Crane NA, Kirchner TB, Sepaniak MJ. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates. Anal Chem, 2013, 85: 3991–3998

    Article  CAS  Google Scholar 

  23. Kneipp K, Kneipp H. Single molecule Raman scattering. Appl Spectrosc, 2006, 60: 322A–334A

    Article  CAS  Google Scholar 

  24. von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater, 2009, 21: 3175–3180

    Article  Google Scholar 

  25. Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal Bioanal Chem, 2009, 394: 1729–1745

    Article  CAS  Google Scholar 

  26. Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys, 1978, 69: 4159

    Article  CAS  Google Scholar 

  27. Kleinman SL, Sharma B, Blaber MG, Henry AI, Valley N, Freeman RG, Natan MJ, Schatz GC, van Duyne RP. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc, 2013, 135: 301–308

    Article  CAS  Google Scholar 

  28. Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, Schatz GC, van Duyne RP. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc, 2008, 130: 12616

    Article  CAS  Google Scholar 

  29. Willets KA, van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007, 58: 267–297

    Article  CAS  Google Scholar 

  30. Zong SF, Wang ZY, Chen H, Yang J, Cui YP. Surface enhanced Raman scattering traceable and glutathione responsive nanocarrier for the intracellular drug delivery. Anal Chem, 2013, 85: 2223–2230

    Article  CAS  Google Scholar 

  31. Qian XM, Zhou X, Nie SM. Stimuli-responsive SERS nanoparticles: Conformational control of plasmonic coupling and surface Raman enhancement. J Am Chem Soc, 2008, 130: 14934–14935

    Article  Google Scholar 

  32. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD. Nanogapengineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater, 2010, 9: 60–67

    Article  CAS  Google Scholar 

  33. Liu RY, Liu BH, Guan GJ, Jiang CL, Zhang ZP. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem Commun, 2012, 48: 9421–9423

    Article  CAS  Google Scholar 

  34. Gehan H, Fillaud L, Chehimi MM, Aubard J, Hohenau A, Felidj N, Mangeney C. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano, 2010, 4: 6491–6500

    Article  CAS  Google Scholar 

  35. Jiang CY, Qian Y, Gao QA, Dong JA, Qian WP. In situ controllable preparation of gold nanorods in thermo-responsive hydrogels and their application in surface enhanced Raman scattering. J Mater Chem, 2010, 20: 8711–8716

    Article  CAS  Google Scholar 

  36. Yin J, Wu T, Song JB, Zhang Q, Liu SY, Xu R, Duan HW. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem Mater, 2011, 23: 4756–4764

    Article  CAS  Google Scholar 

  37. An ZS, Tang W, Wu MH, Jiao Z, Stucky GD. Heterofunctional polymers and core-shell nanoparticles via cascade aminolysis/Michael addition and alkyne-azide click reaction of RAFT polymers. Chem Commun, 2008: 6501–6503

    Google Scholar 

  38. Scales CW, Convertine AJ, McCormick CL. Fluorescent labeling of RAFT-generated poly(N-isopropylacrylamide) via a facile maleimidethiol coupling reaction. Biomacromolecules, 2006, 7: 1389–1392

    Article  CAS  Google Scholar 

  39. Cheng L, Liu AP, Peng S, Duan HW. Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. ACS Nano, 2010, 4: 6098–6104

    Article  CAS  Google Scholar 

  40. Jing C, Gu Z, Ying YL, Li DW, Zhang L, Long YT. Chrominance to dimension: A real-time method for measuring the size of single gold nanoparticles. Anal Chem, 2012, 84: 4284–4291

    Article  CAS  Google Scholar 

  41. Wang CX, Du Y, Wu Q, Xuan SG, Zhou JJ, Song JB, Shao FW, Duan HW. Stimuli-responsive plasmonic core-satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. Chem Commun, 2013, 49: 5739–5741

    Article  CAS  Google Scholar 

  42. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:▭ Applications in biological imaging and biomedicine. J PhysChem B, 2006, 110: 7238–7248

    CAS  Google Scholar 

  43. Yin J, Ge ZS, Liu H, Liu SY. Synthesis of amphiphilic copolymer brushes possessing alternating poly(methyl methacrylate) and poly(N-isopropylacrylamide) grafts via a combination of ATRP and click chemistry. J Polym Sci, Part A: Polym Chem, 2009, 47: 2608–2619

    Article  CAS  Google Scholar 

  44. He J, Liu Y, Babu T, Wei ZJ, Nie ZH. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J Am Chem Soc, 2012, 134: 11342–11345

    Article  CAS  Google Scholar 

  45. He J, Huang XL, Li YC, Liu YJ, Babu T, Aronova MA, Wang SJ, Lu ZY, Chen XY, Nie ZH. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J Am Chem Soc, 2013, 135: 7974–7984

    Article  CAS  Google Scholar 

  46. Xia Y, Burke NAD, Stöver HDH. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006, 39: 2275–2283

    Article  CAS  Google Scholar 

  47. Xia Y, Yin XC, Burke NAD, Stöver HDH. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2005, 38: 5937–5943

    Article  CAS  Google Scholar 

  48. Zhu MQ, Wang LQ, Exarhos GJ, Li ADQ. Thermosensitive gold nanoparticles. J Am Chem Soc, 2004, 126: 2656–2657

    Article  CAS  Google Scholar 

  49. Wells MS, Retterer SD, Oran JM, Sepaniak MJ. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy. Acs Nano, 2009, 3: 3845–3853

    Article  CAS  Google Scholar 

  50. Zrazhevskiy P, Gao XH. Quantum dot imaging platform for single-cell molecular profiling. Nat Comm, 2013, 4: 1619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yin or YunSheng Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, J., He, Y., Li, W. et al. Wide range temperature detection with hybrid nanoparticles traced by surface-enhanced Raman scattering. Sci. China Chem. 57, 417–425 (2014). https://doi.org/10.1007/s11426-013-4974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4974-x

Keywords

Navigation