Skip to main content
Log in

Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets

  • Articles
  • Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

High surface energy of high-index facets endows nanocrystals with high activities and thus promotes potential applications such as highly efficient catalysts, special optical, electrical and magnetic devices. But the high surface energy of the high-index facets usually drives them to grow faster than the other facets and finally disappear during the crystal growth, which leads the synthesis of nanocrystals with high-indexed facets exposed to be a great challenge. Herein, we introduced two routes to control the synthesis of α-Fe2O3 polyhedrons with different sets of high-index facets, one using different metal ions (Ni2+, Cu2+ or Zn2+) as structure-directing agents and the other applying polymer surfactant sodium carboxymethyl cellulose (CMC) as additive. The growth process of high-index α-Fe2O3 polyhedrons was also discussed and possible growth mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732–735

    Article  CAS  Google Scholar 

  2. Jeong GH, Kim M, Lee YW, Choi W, Oh WT, Park QH, Han SW. Polyhedral Au nanocrystals exclusively bound by {110} facets: The rhombic dodecahedron. J Am Chem Soc, 2009, 131: 1672–1673

    Article  CAS  Google Scholar 

  3. Ma YY, Kuang Q, Jiang ZY, Xie ZX, Huang RB, Zheng LS. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew Chem Int Ed, 2008, 47: 8901–8904

    Article  CAS  Google Scholar 

  4. Pimentael GC, Coonrod JA. Opportunities in Chemistry. National Academy Press, 1985

    Google Scholar 

  5. Kim F, Connor S, Song H, Kuykendall T, Yang PD. Platonic gold nanocrystals. Angew Chem Int Ed, 2004, 43: 3673–3677

    Article  CAS  Google Scholar 

  6. Li CC, Shuford KL, Park QH, Cai WP, Li Y, Lee EJ, Cho SO. High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed, 2007, 46: 3264–3268

    Article  CAS  Google Scholar 

  7. Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo FJ, Liz-Marzán LM. Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater, 2006, 18: 2529–2534

    Article  Google Scholar 

  8. Kwon K, Lee KY, Lee YW, Kim M, Heo J, Ahn SJ, Han SW. Controlled synthesis of icosahedral gold nanoparticles and their surface-nhanced Raman scattering property. J Phys Chem C, 2007, 111: 1161–1165

    Article  CAS  Google Scholar 

  9. Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176–2179

    Article  CAS  Google Scholar 

  10. Jiang ZY, Kuang Q, Xie ZX, Zheng LS. Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv Funct Mater, 2010, 20: 3634–3645

    Article  CAS  Google Scholar 

  11. Liu G, Yu JC, Lu GQ, Cheng HM. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties. Chem Commun, 2011, 47: 6763–6783

    Article  CAS  Google Scholar 

  12. Ming T, Feng W, Tang Q, Wang F, Sun LD, Wang JF, Yan CH. Growth of tetrahexahedral gold nanocrystals with high-index facets. J Am Chem Soc, 2009, 131: 16350–16351

    Article  CAS  Google Scholar 

  13. Han XG, Jin MS, Xie SF, Kuang Q, Jiang ZY, Jiang YQ, Xie ZX, Zheng LS. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew Chem Int Ed, 2009, 48: 9180–9183

    Article  CAS  Google Scholar 

  14. Leng M, Liu MZ, Zhang YB, Wang ZQ, Yu C, Yang XG, Zhang HJ, Wang C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J Am Chem Soc, 2010, 132: 17084–17087

    Article  CAS  Google Scholar 

  15. Hu LH, Peng Q, Li YD. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc, 2008, 130: 16136–16137

    Article  CAS  Google Scholar 

  16. Wen CZ, Jiang HB, Qiao SZ, Yang HG, Lu GQ. Synthesis of high-reactive facets dominated anatase TiO2. J Mater Chem, 2011, 21: 7052–7061

    Article  CAS  Google Scholar 

  17. Yu T, Kim DY, Zhang H, Xia YN. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew Chem Int Ed, 2011, 50: 2773–2777

    Article  CAS  Google Scholar 

  18. Niu WX, Zhang L, Xu GB. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano, 2010, 4: 1987–1996

    Article  CAS  Google Scholar 

  19. Chen JS, Zhu T, Yang XH, Yang HG, Lou XW. Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J Am Chem Soc, 2010, 132: 13162–13164

    Article  CAS  Google Scholar 

  20. Hu XL, Yu JC, Gong JM, Li Q, Li GS. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater, 2007, 19: 2324–2329

    Article  CAS  Google Scholar 

  21. Li LS, Yu YH, Meng F, Tan YZ, Hamers RJ, Jin S. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett, 2012, 12: 724–731

    Article  CAS  Google Scholar 

  22. Chen J, Xu LN, Li WY, Gou XL. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17: 582–586

    Article  CAS  Google Scholar 

  23. Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, Pang YC, Zhang Z, Yan CH. Iron oxide nanotubes-Single-crystalline iron oxide nanotubes. Angew Chem Int Ed, 2005, 44: 4328–4333

    Article  CAS  Google Scholar 

  24. Woo K, Lee HJ, Ahn JP, Park YS. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater, 2003, 15: 1761–1764

    Article  CAS  Google Scholar 

  25. Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZG, Yan CH, Zheng K, Zhang Z, Takano M, Hayashi N, Eltschka M, Klaui M, Rudiger U, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Tzvetkov G, Raabe J. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc, 2008, 130: 16968–16977

    Article  CAS  Google Scholar 

  26. Cao MH, Liu TF, Gao S, Sun GB, Wu XL, Hu CW, Wang ZL. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: Large-scale synthesis, formation mechanism, and properties. Angew Chem Int Ed, 2005, 44: 4197–4201

    Article  CAS  Google Scholar 

  27. Koo B, Xiong H, Slater MD, Prakapenka VB, Baasubramanian M, Podsiadlo P, Johnson CS, Rajh T, Shevchenko TEV. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett, 2012, 12: 2429–2435

    Article  CAS  Google Scholar 

  28. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater, 2006, 18: 2426–2431

    Article  CAS  Google Scholar 

  29. Zhu LP, Xiao HM, Liu XM, Fu SY. Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures. J Mater Chem, 2006, 16: 1794–1797

    Article  CAS  Google Scholar 

  30. Liu RM, Jiang YW, Chen Q, Lu QY, Du W, Gao F. Nickel ions inducing growth of high-index faceted α-Fe2O3 and their facet-controlled magnetic properties. RSC Adv, 2013, 3: 8261–8268

    Article  CAS  Google Scholar 

  31. Liu RM, Jiang YW, Fan H, Lu QY, Du W, Gao F. Metal ions induce growth and magnetism alternation of α-Fe2O3 crystals bound by high-indexed facets. Chem A Eur J, 2012, 18: 8957–8963

    Article  CAS  Google Scholar 

  32. Yin JZ, Yu ZN, Gao F, Wang JJ, Pang H, Lu QY. Low-symmetrical iron oxide nanocrystals bound by high-index facets. Angew Chem Int Ed, 2010, 49: 6328–6332

    Article  CAS  Google Scholar 

  33. Komarneni S, Fregeau E, Breval E, Roy R. Hydrothermal preparation of ultrafine ferrites and their fintering. J Am Ceram Soc Commun, 1988, 71: C26–C28

    CAS  Google Scholar 

  34. Komarneni S, D’Arrigo MC, Leonelli C, Pellacani GC, Katsuki H. Microwave-hydrothermal synthesis of nanophase ferrites. J Am Ceram Soc, 1998, 81: 3041–3043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingYi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Liu, R., Yin, J. et al. Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets. Sci. China Chem. 57, 114–121 (2014). https://doi.org/10.1007/s11426-013-4973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4973-y

Keywords

Navigation