Skip to main content
Log in

Biological identity of nanomaterials: Opportunities and challenges

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The emergence of nanoparticles (NPs) has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas, including drug delivery and therapy. Many novel NPs have been synthesized and used to reduce drug toxicity, improve bio-availability, prolong circulation time, control drug release, and actively target to desired cells or tissues. However, clinical translation of NPs with the goal of treating particularly challenging diseases, such as cancer, will require a thorough understanding of how the NP properties influence their fate in biological systems, especially in vivo. Many efforts have been paid to studying the interactions and mechanisms of NPs and cells. Unless deliberately designed, the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological systems. In this view, the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are summarized. By understanding the protein-NP interactions, some guidelines for safety design of NPs, challenges and future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Townsend M, Rice A. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937

    Article  Google Scholar 

  2. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018

    Article  CAS  Google Scholar 

  3. Dujardin E, Mann S. Bio-inspired materials chemistry. Adv Mater, 2002, 14(11): 775–788

    Article  CAS  Google Scholar 

  4. Martinez JO, Brown BS, Quattrocchi N, Evangelopoulos M, Ferrari M, Tasciotti E. Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Chin Sci Bull, 2012, 57(31): 3961–3971

    Article  CAS  Google Scholar 

  5. Wei J, Dai Y, Chen Y, Chen X. Mechanical and thermal properties of polypeptide modified hydroxyapatite/poly (L-lactide) nanocomposites. Sci China Chem, 2011, 54(3): 431–437

    Article  CAS  Google Scholar 

  6. Zhang W, Tu Y, Sun H, Yu K, Gong X, Cheng Stephen ZD. Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane-[60] fullerene dyad as a novel electron acceptor. Sci China Chem, 2012, 55(5): 749–754

    Article  CAS  Google Scholar 

  7. Qin A, Zhang Y, Han N, Mei J, Sun J, Fan W, Tang BZ. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. Sci China Chem, 2012, 55(5): 772–778

    Article  CAS  Google Scholar 

  8. Wang Z, Hu Q, Wang Y. Preparation of chitosan rods with excellent mechanical properties: One candidate for bone fracture internal fixation. Sci China Chem, 2011, 54(2): 380–384

    Article  CAS  Google Scholar 

  9. Wang Y, Herron N. Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J Phys Chem, 1991, 95(2): 525–532

    Article  CAS  Google Scholar 

  10. Bawendi MG, Steigerwald ML, Brus LE. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Ann Rev Phys Chem, 1990, 41(1): 477–496

    Article  CAS  Google Scholar 

  11. Weller H. Quantized semiconductor particles: A novel state of matter for materials science. Adv Mater, 1993, 5(2): 88–95

    Article  CAS  Google Scholar 

  12. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev, 2008, 37(9): 1783–1791

    Article  CAS  Google Scholar 

  13. West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng, 2003, 5(1): 285–292

    Article  CAS  Google Scholar 

  14. Xu B, Ma X, Rao Y, Dong J, Qian W. Plasmonic biosensors and nanoprobes based on gold nanoshells. Chin Sci Bull, 2011, 56(31): 3234–3241

    Article  CAS  Google Scholar 

  15. Wang D, Su H, Liu Y, Wu C, Xia C, Sun J, Gao F, Gong Q, Song B, Ai H. Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Chin Sci Bull, 2012, 57(31): 4012–4018

    Article  CAS  Google Scholar 

  16. Du K, Zhu Y, Xu H, Yang X. Multifunctional magnetic nanoparticles: Synthesis, modification and biomedical applications (in Chinese). Prog Chem, 2011, 23(11): 2287–2298

    CAS  Google Scholar 

  17. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater, 2010, 22(25): 2729–2742

    Article  CAS  Google Scholar 

  18. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew Chem Int Ed, 2010, 49(12): 2114–2138

    Article  CAS  Google Scholar 

  19. Guo S, Dong S. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev, 2011, 40(5): 2644–2672

    Article  CAS  Google Scholar 

  20. Wan W, Zhao Z, Fan Y, Hu H, Zhou Q, Qiu J. Graphene derivatives: Synthesis and applications. Prog Chem, 2011, 23(9): 1883–1891

    CAS  Google Scholar 

  21. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J. Nuclear-targeted drug delivery of tat peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc, 2012, 134(13): 5722–5725

    Article  CAS  Google Scholar 

  22. Luo Z, Cai K, Zhang B, Duan L, Liu A, Gong D. Application of mesoporous silica nanoreservoir in smart drug controlled release systems. Prog Chem, 2011, 23(11): 2326–2338

    CAS  Google Scholar 

  23. Lin YS, Abadeer N, Hurley KR, Haynes CL. Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J Am Chem Soc, 2011, 133(50): 20444–20457

    Article  CAS  Google Scholar 

  24. Tang S, Sun XJ, Lin L, Sun Y, Lin X. Monodisperse mesoporous silica nanoparticles: Synthesis and application in biomaterials (in Chinese). Prog Chem, 2011, 23(9): 1974–1984

    Google Scholar 

  25. Mu X, Wu C, Lai J, Chen J, Zheng J, Li C, Zhao Y. A facile and general approach for the synthesis of fluorescent silica nanoparticles doped with inert dyes. Chin Sci Bull, 2011, 56(31): 3242–3246

    Article  CAS  Google Scholar 

  26. Yu Z, He B, Sheng M, Wang G, Gu Z. Novel plgge graft polymeric micelles for doxorubicin delivery. Chin Sci Bull, 2012, 57(31): 3994–4004

    Article  CAS  Google Scholar 

  27. Xiao S, Liu X, Tong C, Zhao L, Liu X, Zhou A, Cao Y. Dialdehyde starch nanoparticles as antitumor drug delivery system: An in vitro, in vivo, and immunohistological evaluation. Chin Sci Bull, 2012, 57(24): 3226–3232

    Article  CAS  Google Scholar 

  28. Ding D, Wang J, Chen Y, Wu W, Jiang X. Synthesis of novel gelatin/poly (acrylic acid) nanorods via the self-assembly of nanospheres. Sci China Chem, 2011, 54(2): 392–396

    Article  CAS  Google Scholar 

  29. Wu H, Su Z, Terayama Y, akahara A. Polystyrene-based blend nanorods with gradient composition distribution. Sci China Chem, 2012, 55(5): 726–734

    Article  CAS  Google Scholar 

  30. Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci, 2011, 2(3): 118–140

    Article  CAS  Google Scholar 

  31. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett, 2010, 10(9): 3223–3230

    Article  CAS  Google Scholar 

  32. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 2005, 4(2): 145–160

    Article  CAS  Google Scholar 

  33. Kaiden T, Yuba E, Harada A, Sakanishi Y, Kono K. Dual signal-responsive liposomes for temperature-controlled cytoplasmic delivery. Bioconjugate Chem, 2011, 22(10): 1909–1915

    Article  CAS  Google Scholar 

  34. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev, 2013, 42(3): 1147–1235

    Article  CAS  Google Scholar 

  35. Li S, Wang K, Chang K-CA, Zong M, Wang J, Cao Y, Bai Y, Wei T, Zhang Z. Preparation and evaluation of nano-hydroxyapatite/poly (styrene-divinylbenzene) porous microsphere for aspirin carrier. Sci China Chem, 2012, 55(6): 1134–1139

    Article  CAS  Google Scholar 

  36. Du J, Tang L, Yuan Y, Wang J. Phosphoester modified poly (ethylenimine) as efficient and low cytotoxic genevectors. Sci China Chem, 2011, 54(2): 351–358

    Article  CAS  Google Scholar 

  37. Xu X, Li C, Li H, Liu R, Jiang C, Wu Y, He B, Gu Z. Polypeptide dendrimers: Self-assembly and drug delivery. Sci China Chem, 2011, 54(2): 326–333

    Article  CAS  Google Scholar 

  38. Xu R, Lu ZR. Design, synthesis and evaluation of spermine-based ph-sensitive amphiphilic gene delivery systems: Multifunctional non-viral gene carriers. Sci China Chem, 2011, 54(2): 359–368

    Article  CAS  Google Scholar 

  39. Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc, 2011, 133(44): 17560–17563

    Article  CAS  Google Scholar 

  40. Fan C, Ting C, Lin H, Wang CH, Liu HL, Yen TC, Yeh CK. Spio-conjugated, doxorubicin-loaded microbubbles for concurrent mri and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials, 2013, 34(14): 3706–3715

    Article  CAS  Google Scholar 

  41. Wan Q, Xie L, Gao L, Wang Z, Nan X, Lei H, Long X, Chen ZY, He CY, Liu G, Liu X, Qiu B. Self-assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery. Nanoscale, 2013, 5(2): 744–752

    Article  CAS  Google Scholar 

  42. Cai H, Yao P. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery. Nanoscale, 2013, 5(7):2892–2900

    Article  CAS  Google Scholar 

  43. Miao W, Shim G, Lee S, Lee S, Choe YS, Oh YK. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials, 2013, 34(13): 3402–3410

    Article  CAS  Google Scholar 

  44. Liu K, Zhang JJ, Cheng FF, Zhang TT, Wang C, Zhu J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem, 2011, 21(32): 12034–12040

    Article  CAS  Google Scholar 

  45. Hu L, Zhang Y, Gao C. Influence of structures and properties of polymer nanoparticles on their cellular uptake and cell functions (in Chinese). Prog Chem, 2009, 21(6): 1254–1267

    CAS  Google Scholar 

  46. Zhang Y, Hu L, Yu D, Gao C. Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials, 2010, 31(32): 8465–8474

    Article  CAS  Google Scholar 

  47. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One, 2010, 5(4): e10051

    Article  Google Scholar 

  48. Yu D, Zhang Y, Zhou X, Mao Z, Gao C.. Influence of surface coating of plga particles on the internalization and functions of human endothelial cells. Biomacromolecules, 2012, 13(10): 3272–3282

    Article  CAS  Google Scholar 

  49. Liu W, Zhou X, Mao Z, Yu D, Wang B, Gao C. Uptake of hydrogel particles with different stiffness and its influence on hepg2 cell functions. Soft Matter, 2012, 8(35): 9235–9245

    Article  CAS  Google Scholar 

  50. Mailander V, Landfester K. Interaction of nanoparticles with cells. Biomacromolecules, 2009, 10(9): 2379–2400

    Article  Google Scholar 

  51. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release, 2010, 145(3): 182–195

    Article  CAS  Google Scholar 

  52. Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small, 2011, 7(14): 1919–1931

    Article  CAS  Google Scholar 

  53. Champion JA, Katare YK, Mitragotri S. Making polymeric micro-and nanoparticles of complex shapes. Proc Natl Acad Sci USA, 2007, 104(29): 11901–11904

    Article  CAS  Google Scholar 

  54. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA, 2006, 103(13): 4930–4934

    Article  CAS  Google Scholar 

  55. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun, 2007, 353(1): 26–32

    Article  CAS  Google Scholar 

  56. Nan A, Bai X, Son SJ, Lee SB, Ghandehari H. Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett, 2008, 8(8): 2150–2154

    Article  CAS  Google Scholar 

  57. Huang M, Ma Z, Khor E, Lim LY. Uptake of fitc-chitosan nanoparticles by a549 cells. Pharm Res, 2002, 19(10): 1488–1494

    Article  CAS  Google Scholar 

  58. Tekle C, Deurs Bv, Sandvig K, Iversen TG. Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands. Nano Lett, 2008, 8(7): 1858–1865

    Article  CAS  Google Scholar 

  59. Sahay G, Kim JO, Kabanov AV, Bronich TK. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials, 2010, 31(5): 923–933

    Article  CAS  Google Scholar 

  60. Nishikawa T, Iwakiri N, Kaneko Y, Taguchi A, Fukushima K, Mori H, Morone N, Kadokawa J. Nitric oxide release in human aortic endothelial cells mediated by delivery of amphiphilic polysiloxane nanoparticles to caveolae. Biomacromolecules, 2009, 10(8): 2074–2085

    Article  CAS  Google Scholar 

  61. Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci, 2009, 110(1): 138–155

    Article  CAS  Google Scholar 

  62. Wang B, Zhang Y, Mao Z, Gao C. Cellular uptake of covalent poly (allylamine hydrochloride) microcapsules and its influences on cell functions. Macromol Biosci, 2012, 12(11): 1534–1545

    Article  CAS  Google Scholar 

  63. Jie W, Qiang Z. Uptake of cyclosporine a loaded colloidal drug carriers by mouse peritoneal macrophages in vitro1. Acta Pharmacol Sinica, 2001, 22(1): 57–61

    Google Scholar 

  64. Xie L, Xu J, Gao C. Multilayers and poly (allylamine hydrochloride)-graft-poly (ethylene glycol) modified bovine serum albumin nanoparticles: Improved stability and ph-responsive drug delivery. Chin J Polym Sci, 2012, 30(5): 719–726

    Article  CAS  Google Scholar 

  65. Xie L, Tong W, Yu D, Xu J, Li J, Gao C. Bovine serum albumin nanoparticles modified with multilayers and aptamers for ph-responsive and targeted anti-cancer drug delivery. J Mater Chem, 2012, 22(13): 6053–6060

    Article  CAS  Google Scholar 

  66. Wang B, Chen G, Mao Z, Zhang Y, Yu D, Gao C. Preparation and cellular uptake of plga particles loaded with lamivudine. Chin Sci Bull, 2012, 57(31): 3985–3993

    Article  CAS  Google Scholar 

  67. Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. J Appl Toxicol, 2010, 30(3): 212–217

    Google Scholar 

  68. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc, 2012, 134(4): 2139–2147

    Article  CAS  Google Scholar 

  69. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Choi K, Jeong SY. Pegylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials, 2011, 32(7): 1880–1889

    Article  CAS  Google Scholar 

  70. Zhou J, Romero G, Rojas E, Ma L, Moya S, Gao C. Layer by layer chitosan/alginate coatings on poly (lactide-co-glycolide) nanoparticles for antifouling protection and folic acid binding to achieve selective cell targeting. J Colloid Interface Sci, 2010, 345(2): 241–247

    Article  CAS  Google Scholar 

  71. Zhang W, Gao C. Intelligent-responsive polymeric particles and their interactions with cells. Mater China, 2012, 31(5): 19–30

    Google Scholar 

  72. Klein J. Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA, 2007, 104(7): 2029–2030

    Article  CAS  Google Scholar 

  73. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA, 2008, 105(38): 14265–14270

    Article  CAS  Google Scholar 

  74. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular Coronas provide the biological identity of nanosized materials. Nat Nanotech, 2012, 7(12): 779–786

    Article  CAS  Google Scholar 

  75. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes mac-1 receptor activation and inflammation. Nat Nanotech, 2010, 6(1): 39–44

    Article  Google Scholar 

  76. Lartigue Ln, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri J-C, Luciani N, Gazeau F. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: Impact on macrophage uptake. ACS Nano, 2012, 6(3): 2665–2678

    Article  CAS  Google Scholar 

  77. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PH, Mailänder V, Musyanovych A, Landfester K. Bsa adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci, 2011, 11(5): 628–638

    Article  CAS  Google Scholar 

  78. Zhu Y, Li W, Li Q, Lia Y, Lia Y, Zhang X, Huang Q. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon, 2009, 47(5): 1351–1358

    Article  CAS  Google Scholar 

  79. Smith PJ, Giroud M, Wiggins HL, Gower F, Thorley JA, Stolpe B, Mazzolini J, Dyson RJ, Rappoport JZ. Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization. Int J Nanomed, 2012, 7: 2045–2055

    CAS  Google Scholar 

  80. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjugate Chem, 2010, 21(12): 2250–2256

    Article  CAS  Google Scholar 

  81. Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU. Quantitative analysis of the protein corona on fept nanoparticles formed by transferrin binding. J Royal Soc Interf, 2010, 7(Suppl 1): S5–S13

    Article  CAS  Google Scholar 

  82. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. Acs Nano, 2011, 5(5): 3693–3700

    Article  CAS  Google Scholar 

  83. Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell “vision” versus physicochemical properties of nanoparticles. ACS Nano, 2011, 5(9): 7263–7276

    Article  CAS  Google Scholar 

  84. Ghavami M, Saffar S, Emamy BA, Peirovi A, Shokrgozar MA, Serpooshanc V, Mahmoudi M. Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv, 2013, 3(4): 1119–1126

    Article  CAS  Google Scholar 

  85. Deng J, Sun M, Zhu J, Gao C. Molecular interactions of different size aunp-cooh nanoparticles with human fibrinogen. Nanoscale, 2013, 5(17): 8130–8137

    Article  CAS  Google Scholar 

  86. Mahmoudi M, Shokrgozar MA, Behzadi S. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles. Nanoscale, 2013, 5(8): 3240–3244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangYou Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J., Yu, D. & Gao, C. Biological identity of nanomaterials: Opportunities and challenges. Sci. China Chem. 56, 1533–1541 (2013). https://doi.org/10.1007/s11426-013-4972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4972-z

Keywords

Navigation