Skip to main content
Log in

Temporal decay of the catalytic oxidation of methane over palladium supported on silica

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The temporal decay of the oxidation of methane (CH4-O2 reaction) over palladium supported on silica is determined experimentally at different temperatures, comparing the results with those of various classical models which show the behavior of the adsorbed phase as the cause of the phenomenon. This effect is visualized through Monte Carlo simulations of the CH4-O2 reaction on a mixed lattice whose partial poisoning, due to the configuration of the OH groups on the surface of the adsorbate, is translated into a gradual decay of the reaction’s activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor KC. Nitric oxide catalysis in automotive exhaust systems. Catal Rev Sci Eng, 1993, 35: 457–481

    Article  CAS  Google Scholar 

  2. Shelef M, Graham G. Why rhodium in automotive three-way catalysts? Catal Rev Sci Eng, 1986, 36: 433–457

    Article  Google Scholar 

  3. Schmitz RA. Intrinsically unstable behavior during the oxidation of carbon monoxide on platinum. Catal Rev Sci Eng, 1986, 28: 89–164

    Article  Google Scholar 

  4. Gelin P, Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl Catal B-Environ, 2002, 39: 1–37

    Article  CAS  Google Scholar 

  5. Choudhary TV, Banerjee S, Choudhary VR. Catalysts for combustion of methane and lower alkanes. Appl Catal A-Gen, 2002, 234: 1–23

    Article  CAS  Google Scholar 

  6. Persson K, Jansson K, Jaras SG. Characterization and microstructure of Pd and bimetallic Pd-Pt catalysts during methane oxidation. J Catal, 2007, 245: 401–414

    Article  CAS  Google Scholar 

  7. Demoulin O, Navez M, Ruiz P. Origin of transient species present on the surface of a PdO/Al2O3 catalyst during the methane combustion reaction. Catal Today, 2006, 12: 153–156

    Article  Google Scholar 

  8. Okumura K, Shinohara E, Niwa M. Loaded on high silica beta support active for the total oxidation of diluted methane in the presence of water vapor. Catal Today, 2006, 117: 577–583

    Article  CAS  Google Scholar 

  9. Persson K, Pfefferle LD, Schwartz W, Ersson A, Järås SG. Stability of palladium-based catalysts during catalytic combustion of methane: The influence of water. Appl Catal B-Environ, 2007, 74: 242–250

    Article  CAS  Google Scholar 

  10. Ciuparu D, Lyubovsky RL, Altman E, Pfefferle LD. Catalytic combustion of methane over palladium-based catalysts. Catal Rev, 2002, 44: 593–649

    Article  CAS  Google Scholar 

  11. Cortés J, Valencia E, Araya P. Two-site mechanism for the oxidation reaction of methane on oxidized palladium. J Phys Chem C, 2010, 114: 11441–11447

    Article  Google Scholar 

  12. Cortés J, Valencia E, Aguila G, Orellana E, Araya P. Time decay of the activity of the reduction reaction of NO by CO on a Pd/Al2O3 catalyst. Catal Lett, 2008, 126: 63–71

    Article  Google Scholar 

  13. Eley DD, Rideal EK. The catalisis of the parahydrogen conversión by tungsten. Proc R Soc London A, 1941, A178: 429–451

    Google Scholar 

  14. Ogunye AF, Ray WH. Optimization of cyclic tubular reactors with catalyst decay. Ind Eng Chem Process Des Dev, 1971, 10: 410–416

    Article  Google Scholar 

  15. Pease RN, Steward LY. The catalytic combination of ethylene and hydrogen in the presence of metallic copper III carbon monoxide as a catalyst poison. J Am Chem Soc, 1925, 47: 1235–1240

    Article  CAS  Google Scholar 

  16. Ogunye AF, Ray WH. Optimization of a vinyl chloride monomer reactor. Ind Eng Chem Process Des Dev, 1970, 9: 619–624

    Article  CAS  Google Scholar 

  17. Voorhies Jr A. Carbon formation in catalytic cracking. Ind Eng Chem Res, 1945, 37: 318–322

    Article  CAS  Google Scholar 

  18. Araya P, Guerrero S, Robertson J, Gracia FG. Methane combustion over Pd/SiO2 catalysts with different degrees of hydrophobicity. Appl Catal A-Gen, 2005, 283: 225–233

    Article  CAS  Google Scholar 

  19. Maffucci L, Lengo P, Di Serio M, Santacesaria E. A rapid method for the evaluation of the dispersion of palladium in supported catalysts. J Catal, 1997, 172: 485–487

    Article  CAS  Google Scholar 

  20. Cortés J, Puschmann H, Valencia E. On the pair approximation method in a nonreactive catalytic system. J Chem Phys, 1996, 105: 6026–6031

    Article  Google Scholar 

  21. Cortés J, Puschmann H, Valencia E. Mean field hierarchical equations model for the A+BC catalitic reaction. J Chem Phys, 1998, 109: 6086–6091

    Article  Google Scholar 

  22. Cortés J, Valencia E. Brosilow-Ziff model for the CO-NO surface reaction on disordered two and three-dimensional substrates. Phys Rev E, 2003, 68: 16111–16119

    Article  Google Scholar 

  23. Cortés J, Valencia E, Herrera J, Araya P. Mechanism and kinetics parameters of the reduction reaction of NO by CO on Pd/Al2O3 Catalyst. J Phys Chem C, 2007, 111: 7063–7071

    Article  Google Scholar 

  24. Cortés J, Valencia E, Araya P. Monte Carlo simulation studies of the catalytic combustion of methane. Catal Lett, 2006, 112: 121–128

    Article  Google Scholar 

  25. Garbowski E, Feumi-Jantou Ch, Mouaddib N, Primet M. Catalytic combustion of methane over palladium supported on alumina catalysts. Evidence for reconstruction of particles. Appl Catal A-Gen, 1994, 109: 277–291

    Article  CAS  Google Scholar 

  26. van Giezen JC, van den Berg FR, Kleinen JL, van Dillen AJ, Geus JW. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. Catal Today, 1999, 47: 287–293

    Article  Google Scholar 

  27. Monteiro RS, Zemlyanov D, Storey JM, Ribeiro FH. Turnover rate and reaction orders for the complete oxidation of me thane on a palladium foil in excess dioxygen. J Catal, 2001, 199: 291–301

    Article  CAS  Google Scholar 

  28. van Giezen JC, van den Berg FR, Kleinen JL, van Dillen AJ, Geus JW. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. Catalysis Today, 1999, 47: 287–293

    Article  Google Scholar 

  29. Au-Yeung J, Chen K, Bell AT, Iglesia E. Isotopic studies of methane oxidation pathways on PdO catalysts. J Catal, 1999, 188: 132–139

    Article  CAS  Google Scholar 

  30. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J Catal, 1998, 179: 431–442

    Article  CAS  Google Scholar 

  31. Carstens JN, Su SC, Bell AT. Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane. J Catal, 1998, 176: 136–142

    Article  CAS  Google Scholar 

  32. Araya P, Guerrero S, Robertson J, Gracia FJ. Methane combustion over Pd/SiO2 catalysts with different degrees of hydrophobicity. Appl Catal A-Gen, 2005, 283: 225–233

    Article  CAS  Google Scholar 

  33. Hurtado P, Ordoñez S, Sastre H, Díez FV. Development of a kinetic model for the oxidation of methane over Pd/Al2O3 at dry and wet conditions. Appl Catal B-Eviron, 2004, 51: 229–238

    Article  CAS  Google Scholar 

  34. Cortés J, Valencia E. Configuration of adsorbed phases and their evolution to adsorbed states in the CH4-O2 catalytic reaction. B Chem Soc Jpn, 2009, 82: 683–688

    Article  Google Scholar 

  35. Brosilow BJ, Ziff RM. Comment on NO-CO reaction on square and hexagonal surfaces: A Monte Carlo simulation. J Catal, 1992, 136: 275–278

    Article  CAS  Google Scholar 

  36. Meng B, Weinberg WH, Evans JW. Transitions in the kinetics and steady states of irreversible A+BC surface-reaction models. Phys Rev E, 1993, 48: 3577–3588

    Article  CAS  Google Scholar 

  37. Cortés J, Valencia E. Brosilow-Ziff model for the CO-NO surface reaction on disordered two and three-dimensional substrates. Phys Rev E, 2003, 68: 16111–16119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Cortés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, J., Valencia, E., Pineda, M. et al. Temporal decay of the catalytic oxidation of methane over palladium supported on silica. Sci. China Chem. 56, 1601–1607 (2013). https://doi.org/10.1007/s11426-013-4969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4969-7

Keywords

Navigation