Skip to main content
Log in

Pt behavior in the Pt-C-S ± Fe-H2O system at 200–400°C and P tot = 1 kbar: Experimental results

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The effect of sulfur on platinum adsorption on carbonaceous matter (CM) was experimentally studied at 200–400°C and P tot = 1 kbar. The IR spectra of the experimental products indicate that sulfur accelerates HC condensation and aromatization, but the effect of sulfur on platinum concentrations in the organic fractions is within the analytical uncertainties. SEM images show the development of a multilayer porous carbonaceous film on the walls of the ampoules and platinum in physical contact with carbonaceous matter. The composition of the film varies, depending on its thickness (3–25 μm), within the following limits: 61.06–100 wt % C, 0–33.7 wt % Pt, 0–5.17 wt % O, and 0–0.74 wt % S. The film contains tiny Pt crystals, whose morphology varies with increasing duration of the experiments from nanometer- and micrometer-sized spheroids to subequant, tabular, and wire-like. Depending on their size, the composition of the crystals varies as follows: 23.30–52.45 wt % Pt, 49.57–73.52 wt % C, and 0–4.20 wt % O. According to our SEM data, the kerogen also contains tiny crystalline segregations of carbon aceous platinum whose morphology and composition are analogous to those on the film. The presence of carbon in the tiny platinum crystals deposited from solution can be explained by the background effect of the kerogen of the film and/or by their crystallization from organo-platinum complexes. In our kinetic experiments, local electrochemical reactions produced aggregates of nanometer-sized (60–250 nm) spheroids around larger micrometer-sized (up to 10 μm) spheroids, whose aggregation resulted in larger crystals and their further transformation. The polymorphism, hierarchical aggregation, and compositional variability of the platinum segregations are likely typical of car- bon-bearing systems because of their crystallization from metastable organo-platinum complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. L. Beloborodov, S. E. Zurabyan, A. P. Luzin, and N. A. Tyukavkina, Organic Chemistry (Drofa, Moscow, 2008) [in Russian].

    Google Scholar 

  • D. W. Brown, A. J. Floyd, and M. Sainsbury, Organic Spectroscopy (Wiley, Chichester, 1988).

    Google Scholar 

  • V. V. Distler, Yu. P. Dikov, M. A. Yudovskaya, I. V. Chaplygin, and M. I. Buleev, “Platinum-chlorine-phosphorus-hydrocarbon complex in volcanic fluids: the first find in the terrestrial environment,” Dokl. Earth Sci. 420(4), 628–631 (2008).

    Article  Google Scholar 

  • V. V. Distler, G. L. Mitrofanov, V. K. Nemerov, V. A. Kovaenker, A. V. Mokhov, L. K. Semeikina, and M. A. Yudovskaya, “Modes of occurrence of the platinum group elements and their origin in the Sukhoi Log Gold Deposit (Russia),” Geol. Ore Dep. 38(6), 413–428 (1996).

    Google Scholar 

  • V. V. Distler, M. A. Yudovskaya, E. A. Razvozzhaeva, A. V. Mokhov, N. V. Trubkin, G. L. Mitrofanov, and V. K. Nemerov, “New data on PGE mineralization in gold ores of the Sukhoi Log Deposit, Lensk gold-bearing district,” Dokl. Earth Sci. 393A(9), 1265–1267 (2003).

    Google Scholar 

  • I. N. Ermolaev, N. A. Sozinov, N. A. Chinyanov, N. I. Goryachkin, and A. V. Nikiforov, “Speciation of platinum metals in black shale-associated gold ores,” Geokhimiya, No. 4, 524–539 (1995).

    Google Scholar 

  • Yu. K. Kalinin, “Shungite rocks: structure, properties, and field of practical application,” Zap. Vsesoyuz. Mineral. O-va 119(5), 1–8 (1990).

    Google Scholar 

  • A. I. Khanchuk, L. P. Plyusnina, V. P. Molchanov, and E. I. Medvedev, “Carbonization and geochemical characteristics of graphite-bearing rocks in the Northern Khanka Terrane, Primorie, Russian Far East,” Geochem. Int. 48(2), 1070–117 (2010).

    Article  Google Scholar 

  • A. I. Khanchuk, N. V. Berdnikov, A. A. Cherepanov, N. S. Konovalova, and D. V. Avdeev, “First finds of platinoids in black-shale sequences of the Bureya Massif (Khabarovsk Region and Jewish Autonomous Okrug),” Dokl. Earth Sci. 425(2), 213–215 (2009).

    Article  Google Scholar 

  • O. K. Krasil’nikova, A. M. Voloshchuk, A. V. Evsyukhin, and M. Yu. Lomovskaya, “Preparation of ultramicro-, micro-, and supermicroporous carbon adsorbents by template procedure,” Colloid J. 68(2), 182–188 (2006).

    Article  Google Scholar 

  • H. Kucha, “Platinum-group metals in the Zechstein copper deposits, Poland,” Econ. Geol. 77, 1578–1591 (1982).

    Article  Google Scholar 

  • M. A. Medkov, A. I. Khanchuk, A. V. Voit, L. P. Plyusnina, V. P. Molchanov, and E. I. Medvedev, “Quantumchemical study of the interaction between Au(0), Pt(0), Ag(0) and fragments of graphenes modeling graphite structure,” Dokl. Earth Sci. 434(2), 1321–1324 (2010).

    Article  Google Scholar 

  • L. P. Plyusnina, and T. V. Kuz’mina, “Experimental investigation of platinum concentration by bitumen at 200–400°C and 1 kbar,” Geochem. Int. 37(5), 441–449 (1999).

    Google Scholar 

  • L. P. Plyusnina, A. I. Khanchuk, V. I. Goncharov, V. A. Sidorov, N. V. Goryachev, T. V. Kuz’mina, and G. G. Likhoidov, “Gold, platinum, and palladium in ores of the Natalka Deposit, Upper Kolyma Region,” Dokl. Earth Sci. 391A(6), 836–840 (2003).

    Google Scholar 

  • L. P. Plyusnina, T. V. Kuz’mina, and O. V. Avchenko, “Modeling of gold sorption on carbonaceous matter at 20–500°C and 1 kbar,” Geochem. Int. 42(8), 755–763 (2004).

    Google Scholar 

  • L. P. Plyusnina, T. V. Kuz’mina, G. G. Likhoidov, and G. A. Narnov, “Experimental modeling of platinum sorption on organic matter,” Appl. Geochem. 15, 777–784 (2000).

    Article  Google Scholar 

  • L. P. Plyusnina, T. V. Kuz’mina, and G. G. Likhoidov, “Experimental study of the influence of sulfur on gold sorption by bitumen at 200–400°C and 1 kbar pressure,” Geochem. Int. 50(1), 26–33 (2012).

    Article  Google Scholar 

  • L. P. Plyusnina, T. V. Kuz’mina, and P. P. Safronov, “Bitumen-graphite transformation (data of experimental modeling),” Dokl. Earth Sci. 425(2), 307–310 (2009).

    Article  Google Scholar 

  • L. P. Plyusnina, G. G. Likhoidov, and N. N. Barinov, “Mn(II)-Mn(III) oxidation kinetics and its effect on crystallization of nanodisperse platinum at 200–300°C and 1 kbar,” Russ. J. Inorg. Chem. 56(9), 1358–1362 (2011).

    Article  Google Scholar 

  • L. P. Plyusnina, G. G. Likhoidov, and Zh. A. Shcheka, “Experimental modeling of platinum behavior under hydrothermal conditions (300–500°C) and 1 kbar,” Geochem. Int. 45(11), 1124–1130 (2007).

    Article  Google Scholar 

  • A. I. Rusanov, Micelle Formation in the Solutions of the Surface-Active Substance (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  • T. G. Shumilova, N. P. Yushkin, and E. V. Pushkarev, “Silver spheroids in graphite-bearing rocks of the Maksyutov Complex, Southern Urals,” Dokl. Earth Sci. 417A(9), 1421–1423 (2007).

    Article  Google Scholar 

  • R. M. Slobodskoi, Organoelement Compound in Magmatogenic and Ore-Forming Processes (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  • G. M. Varshal, T. K. Velyukhanova, A. V. Korchantsev, K. I. Tobenko, A. Kh. Galuzinskaya, and M. V. Akhmanova, “On relation of sorption capacity of carbonaceous matter with respect to noble metals with its structure,” Geokhimiya, No. 8, 1191–1200 (1995).

    Google Scholar 

  • A. Wang, P. Dhamelincourt, J. Dubessy, D. Guerard, P. Landais, and M. Lelauainz, “Characterization of graphite alteration in an uranium deposit by micro-Raman spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy,” Carbon 27(2), 209–218 (1989).

    Article  Google Scholar 

  • M. Watanabe, T. Akimoto, and E. Kondon, “Synthesis of platinum-ruthenium alloy nanoparticles on carbon using supercritical fluid deposition,” ECS J. Solid State Sci. Technol. 2(1), 9–12 (2013).

    Article  Google Scholar 

  • N. P. Yushkin, “Globular supramolecular structure of shungite: scanning tunneling microscopy data,” Dokl. Earth Sci. 337(6), 800–803 (1994).

    Google Scholar 

  • N. P. Yushkin, “Ultra- and micro-dispersed state of mineral matter and problems of nanomineralogy,” in Nanomineralogy. Ultra- and Micro-Dispersed State of Mineral Matter, Ed. by N. P. Yushkin, A. M. Askhabov, and V. I. Rakin (Nauka, St. Petersburg, 2005), pp. 10–60.

    Google Scholar 

  • G. B. Zaslavsky, R. Z. Sagdeev, and D. A. Usikov, Low Chaos and Quasiregular Structure (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Plyusnina.

Additional information

Original Russian Text © L.P. Plyusnina, T.V. Kuz’mina, G.G. Likhoidov, N.N. Barinov, 2015, published in Geokhimiya, 2015, No. 7, pp. 579–588.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plyusnina, L.P., Kuz’mina, T.V., Likhoidov, G.G. et al. Pt behavior in the Pt-C-S ± Fe-H2O system at 200–400°C and P tot = 1 kbar: Experimental results. Geochem. Int. 53, 581–589 (2015). https://doi.org/10.1134/S0016702915070083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915070083

Keywords

Navigation