Science China Chemistry

, Volume 56, Issue 10, pp 1382–1391 | Cite as

Multiple biological functions and pharmacological effects of lycorine

  • ZhiFei Cao
  • Ping Yang
  • QuanSheng ZhouEmail author
Reviews Special Topic Chemistry for Life Sciences


Lycorine is the major active component from the amaryllidaceae family plant Lycoris radiate, a represent traditional Chinese medicinal herb, and is one of the typical alkaloids with pyrrolophenanthridine nucleus core. Lycorine has drawn great interest in medicinal field due to its divergent chemical structures and multiple biological functions, as well as pharmacological effects on various diseases. Accumulated evidence shows that lycorine not only possesses strong pharmacological effects on many diseases, including anti-leukemia, anti-tumor, anti-angiogenesis, anti-virus, anti-bacteria, anti-inflammation, and antimalaria, but also exerts many other biological functions, such as inhibition of acetylcholinesterase and topoisomerase, suppression of ascorbic acid biosynthesis, and control of circadian period length. Notably, lycorine exhibits its numerous pharmacological effects on various diseases with very low toxicity and mild side effects. The divergent chemical structures, multiple biological functions, and very low toxicity of lycorine imply that the agent is a potential drug candidate that warrants for further preclinical and clinic investigation.


traditional Chinese medicinal herbs lycorine anti-cancer anti-virus angiogenesis neovascularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci U S A, 2008, 105(12): 4826–4831Google Scholar
  2. 2.
    Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010, 328(5975): 240–243Google Scholar
  3. 3.
    Chen J, Wang A, Huo HH, Huang PQ. Progress on the total synthesis of natural products in China: From 2006 to 2010. Sci China Chem, 2012, 55(7): 1175–1212Google Scholar
  4. 4.
    Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, Evidente A, Pottier L. Lycorine and its derivatives for anticancer drug design. Mini Rev Med Chem, 2010, 10(1): 41–50Google Scholar
  5. 5.
    Elgorashi EE, Drewes SE, Van Staden J. Organ-to-organ and seasonal variation in alkaloids from Crinum macowanii. Fitoterapia, 2002, 73(6): 490–495Google Scholar
  6. 6.
    Cedron JC, Gutierrez D, Flores N, Ravelo AG, Estevez-Braun A. Synthesis and antiplasmodial activity of lycorine derivatives. Bioorg Med Chem, 2010, 18(13): 4694–4701Google Scholar
  7. 7.
    Van Goietsenoven G, Andolfi A, Lallemand B, Cimmino A, Lamoral-Theys D, Gras T, Abou-Donia A, Dubois J, Lefranc F, Mathieu V, Kornienko A, Kiss R, Evidente A. Amaryllidaceae alkaloids belonging to different structural subgroups display activity against apoptosis-resistant cancer cells. J Nat Prod, 2010, 73(7): 1223–1227Google Scholar
  8. 8.
    Liu XS, Jiang J, Jiao XY, Wu YE, Lin JH, Cai YM. Lycorine induces apoptosis and down-regulation of Mcl-1 in human leukemia cells. Cancer Lett, 2009, 274(1): 16–24Google Scholar
  9. 9.
    Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le CB, Wauthoz N, Megalizzi V, Gras T, Bruyere C, Dubois J, Mathieu V, Kornienko A, Kiss R, Evidente A. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J Med Chem, 2009, 52(20): 6244–6256Google Scholar
  10. 10.
    McNulty J, Nair JJ, Bastida J, Pandey S, Griffin C. Structure-activity studies on the lycorine pharmacophore: A potent inducer of apoptosis in human leukemia cells. Phytochemistry, 2009, 70(7): 913–919Google Scholar
  11. 11.
    Liu R, Cao Z, Tu J, Pan Y, Shang B, Zhang G, Bao M, Zhang S, Yang P, Zhou Q. Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry. Pigment Cell Melanoma Res, 2012, 25(5): 630–638Google Scholar
  12. 12.
    Cao Z, Yu D, Fu S, Zhang G, Pan Y, Bao M, Tu J, Shang B, Guo P, Yang P, Zhou Q. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol Lett, 2013, 218(2): 174–185Google Scholar
  13. 13.
    Szlavik L, Gyuris A, Minarovits J, Forgo P, Molnar J, Hohmann J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med, 2004, 70(9): 871–873Google Scholar
  14. 14.
    Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS, Tan X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res, 2005, 67(1): 18–23Google Scholar
  15. 15.
    Hwang YC, Chu JJ, Yang PL, Chen W, Yates MV. Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res, 2008, 77(3): 232–236Google Scholar
  16. 16.
    Zou G, Puig-Basagoiti F, Zhang B, Qing M, Chen L, Pankiewicz KW, Felczak K, Yuan Z, Shi PY. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384(1): 242–252Google Scholar
  17. 17.
    Liu J, Yang Y, Xu Y, Ma C, Qin C, Zhang L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol J, 2011, 8: 483Google Scholar
  18. 18.
    He J, Qi WB, Wang L, Tian J, Jiao PR, Liu GQ, Ye WC, Liao M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respi Viruses, 2012, doi: 10.1111/irv.12035.Google Scholar
  19. 19.
    Massardo DR, Manna F, Schafer B, Wolf K, Del GL. Complete absence of mitochondrial DNA in the petite-negative yeast Schizosaccharomyces pombe leads to resistance towards the alkaloid lycorine. Curr Genet, 1994, 25(1): 80–83Google Scholar
  20. 20.
    Del GA, Massardo DR, Manna F, Koltovaya N, Hartings H, Del GL, Wolf K. Correlation of resistance to the alkaloid lycorine with the degree of suppressiveness in petite mutants of Saccharomyces cerevisiae. Curr Microbiol, 1997, 34(6): 382–384Google Scholar
  21. 21.
    Del GL, Massardo DR, Pontieri P, Wolf K. Interaction between yeast mitochondrial and nuclear genomes: Null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae. Gene, 2005, 354: 9–14Google Scholar
  22. 22.
    Ch’en MC, Jin SC, Wang YC. Effect of lycorine on the pituitary-adrenal system. Yao Xue Xue Bao, 1965, 12(12): 767–771Google Scholar
  23. 23.
    Yamazaki Y, Kawano Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-alpha and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem Pharm Bull (Tokyo), 2011, 59(3): 388–3891Google Scholar
  24. 24.
    Citoglu GS, Acikara OB, Yilmaz BS, Ozbek H. Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr. Fitoterapia, 2012, 83(1): 81–87Google Scholar
  25. 25.
    Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, Diao Y, Zhao Z, Luo L, Yin Z. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol, 2012, 12(1): 249–256Google Scholar
  26. 26.
    Elgorashi EE, Stafford GI, Van Staden J. Acetylcholinesterase enzyme inhibitory effects of amaryllidaceae alkaloids. Planta Med, 2004, 70(3): 260–262Google Scholar
  27. 27.
    Nair JJ, van Staden J. Acetylcholinesterase inhibition within the lycorine series of Amaryllidaceae alkaloids. Nat Prod Commun, 2012, 7(7): 959–962Google Scholar
  28. 28.
    Nino J, Hincapie GM, Correa YM, Mosquera OM. Alkaloids of Crinum x powellii “Album” (Amaryllidaceae) and their topoisomerase inhibitory activity. Z Naturforsch C, 2007, 62(3–4): 223–226Google Scholar
  29. 29.
    McNulty J, Nair JJ, Singh M, Crankshaw DJ, Holloway AC, Bastida J. Cytochrome P450 3A4 inhibitory activity studies within the lycorine series of alkaloids. Nat Prod Commun, 2010, 5(8): 1195–1200Google Scholar
  30. 30.
    Kushida N, Atsumi S, Koyano T, Umezawa K. Induction of flat morphology in K-ras-transformed fibroblasts by lycorine, an alkaloid isolated from the tropical plant Eucharis grandiflora. Drugs Exp Clin Res, 1997, 23(5–6): 151–155Google Scholar
  31. 31.
    Baez A, Vazquez D. Binding of [3H]narciclasine to eukaryotic ribosomes. A study on a structure-activity relationship. Biochim Biophys Acta, 1978, 518(1): 95–103Google Scholar
  32. 32.
    Arrigoni O, Arrigoni-Liso R, Calabrese G. Ascorbic Acid as a factor controlling the development of cyanide-insensitive respiration. Science, 1976, 194(4262): 332–333Google Scholar
  33. 33.
    Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M. L-galactono-gamma-lactone dehydrogenase from sweet potato: Purification and cDNA sequence analysis. Plant Cell Physiol, 1998, 39(12): 1350–1358Google Scholar
  34. 34.
    Mellado M, Contreras RA, Gonzalez A, Dennett G, Moenne A. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiol Biochem, 2012, 51: 102–108Google Scholar
  35. 35.
    Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot, 2012, 63(5): 1809–1822Google Scholar
  36. 36.
    Schrader KK, Andolfi A, Cantrell CL, Cimmino A, Duke SO, Osbrink W, Wedge DE, Evidente A. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem Biodivers, 2010, 7(9): 2261–2280Google Scholar
  37. 37.
    Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5′-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int, 2010, 59(2): 226–231Google Scholar
  38. 38.
    Giordani RB, Vieira PB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry, 2011, 72(7): 645–650Google Scholar
  39. 39.
    Abbassy MA, el-Gougary OA, el-Hamady S, Sholo MA. Insecticidal, acaricidal and synergistic effects of soosan, Pancratium maritimum extracts and constituents. J Egypt Soc Parasitol, 1998, 28(1): 197–205Google Scholar
  40. 40.
    Onishi Y, Kawano Y, Yamazaki Y. Lycorine, a candidate for the control of period length in mammalian cells. Cell Physiol Biochem, 2012, 29(3–4): 407–416Google Scholar
  41. 41.
    Ch’en MC, Li CH. Some pharmacological actions of lycorine. Yao Xue Xue Bao, 1965, 12(9): 594–600Google Scholar
  42. 42.
    Wu ZP, Chen Y, Xia B, Wang M, Dong YF, Feng X. Two novel ceramides with a phytosphingolipid and a tertiary amide structure from Zephyranthes candida. Lipids, 2009, 44(1): 63–70Google Scholar
  43. 43.
    Nair JJ, Aremu AO, van Staden J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J Ethnopharmacol, 2011, 137(3): 1102–1106Google Scholar
  44. 44.
    Reyes-Chilpa R, Berkov S, Hernandez-Ortega S, Jankowski CK, Arseneau S, Clotet-Codina I, Este JA, Codina C, Viladomat F, Bastida J. Acetylcholinesterase-inhibiting alkaloids from Zephyranthes concolor. Molecules, 2011, 16(11): 9520–9533Google Scholar
  45. 45.
    Salehi SMH, Azadi B, Amin G, Amini M, Sharifzadeh M. The first phytochemical report of Galanthus transcaucasicus Fomin. Daru, 2010, 18(2): 124–127Google Scholar
  46. 46.
    Katoch D, Kumar S, Kumar N, Singh B. Simultaneous quantification of Amaryllidaceae alkaloids from Zephyranthes grandiflora by UPLC-DAD/ESI-MS/MS. J Pharm Biomed Anal, 2012, 71: 187–192Google Scholar
  47. 47.
    Georgieva L, Berkov S, Kondakova V, Bastida J, Viladomat F, Atanassov A, Codina C. Alkaloid variability in Leucojum aestivum from wild populations. Z Naturforsch C, 2007, 62(9–10): 627–635Google Scholar
  48. 48.
    Mu HM, Wang R, Li XD, Jiang YM, Peng F, Xia B. Alkaloid accumulation in different parts and ages of Lycoris chinensis. Z Naturforsch C, 2010, 65(7–8): 458–462Google Scholar
  49. 49.
    Ptak A, El TA, Dupire F, Boisbrun M, Henry M, Chapleur Y, Mos M, Laurain-Mattar D. LCMS and GCMS for the screening of alkaloids in natural and in vitro extracts of Leucojum aestivum. J Nat Prod, 2009, 72(1): 142–147Google Scholar
  50. 50.
    Kaya GI, Cicek D, Sarikaya B, Onur MA, Somer NU. HPLC — DAD analysis of lycorine in Amaryllidaceae species. Nat Prod Commun, 2010, 5(6): 873–876Google Scholar
  51. 51.
    Yamada K, Yamashita M, Sumiyoshi T, Nishimura K, Tomioka K. Total synthesis of (-)-lycorine and (-)-2-epi-lycorine by asymmetric conjugate addition cascade. Org Lett, 2009, 11(7): 1631–1633Google Scholar
  52. 52.
    Jones MT, Schwartz BD, Willis AC, Banwell MG. Rapid and enantioselective assembly of the lycorine framework using chemoenzymatic techniques. Org Lett, 2009, 11(15): 3506–3509Google Scholar
  53. 53.
    John R, Mohamed SK, Mahmoud AR, Ahmed AA. Crinum, an endless source of bioactive principles: A review. Part I. Crinum alkaloids: Lycorine-type alkaloids. IJPSR, 2012, 3(7): 1883–1890Google Scholar
  54. 54.
    Jimenez A, Santos A, Alonso G, Vazquez D. Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids. Biochim Biophys Acta, 1976, 425(3): 342–348Google Scholar
  55. 55.
    Liu J, Hu WX, He LF, Ye M, Li Y. Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett, 2004, 578(3): 245–250Google Scholar
  56. 56.
    Evidente A, Kireev AS, Jenkins AR, Romero AE, Steelant WF, Van Slambrouck S, Kornienko A. Biological evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med, 2009, 75(5): 501–507Google Scholar
  57. 57.
    Li Y, Liu J, Tang LJ, Shi YW, Ren W, Hu WX. Apoptosis induced by lycorine in KM3 cells is associated with the G0/G1 cell cycle arrest. Oncol Rep, 2007, 17(2): 377–384Google Scholar
  58. 58.
    Li L, Dai HJ, Ye M, Wang SL, Xiao XJ, Zheng J, Chen HY, Luo YH, Liu J. Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int, 2012, 12(1): 49Google Scholar
  59. 59.
    Min BS, Gao JJ, Nakamura N, Kim YH, Hattori M. Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem Pharm Bull (Tokyo), 2001, 49(9): 1217–1219Google Scholar
  60. 60.
    Liu J, Li Y, Tang LJ, Zhang GP, Hu WX. Treatment of lycorine on SCID mice model with human APL cells. Biomed Pharmacother, 2007, 61(4): 229–234Google Scholar
  61. 61.
    Liu J, Hu JL, Shi BW, He Y, Hu WX. Up-regulation of p21 and TNF-alpha is mediated in lycorine-induced death of HL-60 cells. Cancer Cell Int, 2010, 10: 25Google Scholar
  62. 62.
    Hayden RE, Pratt G, Drayson MT, Bunce CM. Lycorine sensitizes CD40 ligand-protected chronic lymphocytic leukemia cells to bezafibrate- and medroxyprogesterone acetate-induced apoptosis but dasatanib does not overcome reported CD40-mediated drug resistance. Haematologica, 2010, 95(11): 1889–1896Google Scholar
  63. 63.
    Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med, 1972, 136(2): 261–276Google Scholar
  64. 64.
    Meadows KL, Hurwitz HI. Anti-VEGF therapies in the clinic.LID Cold Spring Harb Perspect Med, 2012, 2(10). doi: 10.1101/cshperspect.a006577.Google Scholar
  65. 65.
    Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR. Antiangiogenic therapy for cancer: An update. Pharmacotherapy, 2012, 32(12):1095–1111Google Scholar
  66. 66.
    Braghiroli MI, Sabbaga J, Hoff PM. Bevacizumab: Overview of the literature. Expert Rev Anticancer Ther, 2012, 12(5): 567–580Google Scholar
  67. 67.
    Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res, 2012, 72(8): 1909–1914Google Scholar
  68. 68.
    Wu JM, Staton CA. Anti-angiogenic drug discovery: Lessons from the past and thoughts for the future. Expert Opin Drug Discov, 2012, 7(8): 723–743Google Scholar
  69. 69.
    Giuliano S, Pages G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie, 2013, 95(6): 1110–1119Google Scholar
  70. 70.
    Hida K, Akiyama K, Ohga N, Maishi N, Hida Y. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biol chem, 2013, 153(3): 243–249Google Scholar
  71. 71.
    Chen CT, Hung MC. Beyond anti-VEGF: Dual-targeting antiangiogenic and antiproliferative therapy. Am J Transl Res, 2013, 5(4): 393–403Google Scholar
  72. 72.
    Liu R, Yang K, Meng C, Zhang Z, Xu Y. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther, 2012, 13(7): 527–533Google Scholar
  73. 73.
    Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol, 2012, 9(9): 498–509Google Scholar
  74. 74.
    Shang B, Cao Z, Zhou Q. Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med, 2012, 6(1): 67–78Google Scholar
  75. 75.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347): 298–307Google Scholar
  76. 76.
    Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor vasculogenic mimicry is associated with poor prognosis of human cancer patients: A systemic review and meta-analysis. Eur J Cancer, 2013, doi: 10.1016/j.ejca.2013.07.148Google Scholar
  77. 77.
    Bao M, Cao Z, Yu D, Fu S, Zhang G, Yang P, Pan Y, Yang B, Han H, Zhou Q. Columbamine suppresses the proliferation and neovascularization of metastatic osteosarcoma U2OS cells with low cytotoxicity. Toxicol Lett, 2012, 215(3): 174–180Google Scholar
  78. 78.
    Liu R, Cao Z, Pan Y, Zhang G, Yang P, Guo P, Zhou Q. Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells. Anticancer Drugs, 2013, 24(7): 667–676Google Scholar
  79. 79.
    Vrijsen R, Vanden BDA, Vlietinck AJ, Boeye A. Lycorine: a eukaryotic termination inhibitor. J Biol Chem, 1986, 261(2): 505–507Google Scholar
  80. 80.
    Schrader KK, Avolio F, Andolfi A, Cimmino A, Evidente A. Ungeremine and its hemisynthesized analogues as bactericides against flavobacterium columnare. J Agric Food Chem, 2013, 61(6): 1179–1183Google Scholar
  81. 81.
    Mikami M, Kitahara M, Kitano M, Ariki Y, Mimaki Y, Sashida Y, Yamazaki M, Yui S. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model. Biol Pharm Bull, 1999, 22(7): 674–678Google Scholar
  82. 82.
    McNulty J, Nair JJ, Little JR, Brennan JD, Bastida J. Structure-activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorg Med Chem Lett, 2010, 20(17): 5290–5294Google Scholar
  83. 83.
    Cortese I, Renna G, Siro-Brigiani G, Poli G, Cagiano R. Pharmacology of lycorine. 1. Effect on biliary secretion in the rat. Boll Soc Ital Biol Sper, 1983, 59(9): 1261–1264Google Scholar
  84. 84.
    Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Regenthal R. Dose-dependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon, 2011, 57(1): 117–124Google Scholar
  85. 85.
    Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Regenthal R. Dose-dependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon, 2011, 57(1): 117–124Google Scholar
  86. 86.
    Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Teichert J, Regenthal R. In vivo assessment of antiemetic drugs and mechanism of lycorine-induced nausea and emesis. Arch Toxicol, 2011, 85(12): 1565–1573Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Cyrus Tang Hematology Center, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow University; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow UniversitySuzhouChina

Personalised recommendations