Skip to main content
Log in

3D-QSAR and docking studies on 2-arylbenzoxazole and linker-Y transthyretin amyloidogenesis inhibitors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transthyretin (TTR), a plasma protein with a tetramer structure, could form amyloid fibril associated with several human diseases through the dissociation of tetramer and the misfolding of monomer. These amyloidogenesis can be inhibited by small molecules which bind to the central channel of TTR. A number of small molecules like 2-arylbenzoxazoles (ABZ) analogues are proposed as promising therapeutic strategy to treat amyloidosis. In this work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies were performed on series of 2-arylbenzoxazoles (ABZ) and linker-Y analogues to investigate the inhibitory activities of TTR amyloidogenesis at atomic level. Significant correlation coefficients for ABZ series (CoMFA, r 2 = 0.877, q 2 = 0.431; CoMSIA, r 2 = 0.836, q 2 = 0.447) and those for linker-Y series (CoMFA, r 2 = 0.828, q 2 = 0.522; CoMSIA, r 2 = 0.800, q 2 = 0.493) were obtained, and the generated models were validated using test sets. In addition, docking studies on 6 compounds binding to TTR were performed to analyze the forward or reverse binding mode and interactions between molecules and TTR. These results from 3D-QSAR and docking studies have great significance for designing novel TTR amyloidogenesis inhibitors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilton JA, Benson MD. Transthyretin: A review from a structural perspective. Cell Mol Life Sci, 2001, 58: 1491–1521

    Article  CAS  Google Scholar 

  2. Bartalena L, Robbins J. Thyroid hormone transport proteins. Clin Lab Med, 1993, 13: 583–598

    CAS  Google Scholar 

  3. Schreiber G, Richardson SJ. The evolution of gene expression, structure and function of transthyretin. Comp Biochem Physiol B: Biochem Mol Biol, 1997, 116: 137–160

    Article  CAS  Google Scholar 

  4. Monaco HL. The transthyretin-retinol-binding protein complex. Biochim Biophys Acta, 2000, 1482: 65–72

    Article  CAS  Google Scholar 

  5. Palaninathan SK. Nearly 200 X-Ray crystal structures of transthyretin—What do they tell us about this protein and the design of drugs for TTR amyloidoses. Curr Med Chem, 2012, 2324–2342

    Google Scholar 

  6. Connors LH, Richardson AM, Theberge R, Costello CE. Tabulation of transthyretin (TTR) variants as of 1/1/2000. Amyloid, 2000, 7: 54–69

    Article  CAS  Google Scholar 

  7. Takeuchi M, Mizuguchi M, Kouno T, Shinohara Y, Aizawa T, Demura M, Mori Y, Shinoda H, Kawano K. Destabilization of transthyretin by pathogenic mutations in the DE loop. Proteins, 2007, 66: 716–725

    Article  CAS  Google Scholar 

  8. Buxbaum JN, Tagoe CE. The genetics of the amyloidoses. Annu Rev Med, 2000, 51: 543–569

    Article  CAS  Google Scholar 

  9. Sacchettini JC, Kelly JW. Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discovery, 2002, 1: 267–275

    Article  CAS  Google Scholar 

  10. Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC. Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol, 2000, 7: 312–321

    Article  CAS  Google Scholar 

  11. Lei M, Yang MF, Huo SH. Intrinsic versus mutation dependent instability/flexibility: A comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants. J Struct Biol, 2004, 148: 153–168

    Article  CAS  Google Scholar 

  12. Ando Y, Ueda M. Diagnosis and therapeutic approaches to transthyretin amyloidosis. Curr Med Chem, 2012, 19: 2312–2323

    Article  CAS  Google Scholar 

  13. Wojtczak A, Cody V, Luft JR, Pangborn W. Structures of human transthyretin complexed with thyroxine at 2.0 Å resolution and 3′,5′-dinitro-N-acetyl-L-thyronine at 2.2 Å resolution. Acta Crystallogr D Biol Crystallogr, 1996, 52: 758–765

    Article  CAS  Google Scholar 

  14. Lauro A, Uso TD, Masetti M, Di Benedetto F, Cautero N, De Ruvo N, Dazzi A, Quintini C, Begliomini B, Siniscalchi A, Ramacciato G, Risaliti A, Miller CM, Pinna AD. Liver transplantation for familial amyloid polyneuropathy non-VAL 30MET variants: Are cardiac complications influenced by prophylactic pacing and immunosuppressive weaning? Transplant Proc, 2005, 37: 2214–2220

    Article  CAS  Google Scholar 

  15. Hornsten R, Wiklund U, Olofsson BO, Jensen SM, Suhr OB. Liver transplantation does not prevent the development of life-threatening arrhythmia in familial amyloidotic polyneuropathy, Portuguese-type (ATTR Val30Met) patients. Transplantation, 2004, 78: 112–116

    Article  Google Scholar 

  16. Arsequell G, Planas A. Methods to evaluate the inhibition of TTR fibrillogenesis induced by small ligands. Curr Med Chem, 2012, 19: 2343–2355

    Article  CAS  Google Scholar 

  17. Nencetti S, Orlandini E. TTR fibril formation inhibitors: Is there a SAR? Curr Med Chem, 2012, 19: 2356–2379

    Article  CAS  Google Scholar 

  18. Baures PW, Peterson SA, Kelly JW. Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem, 1998, 6: 1389–1401

    Article  CAS  Google Scholar 

  19. Oza VB, Petrassi HM, Purkey HE, Kelly JW. Synthesis and evaluation of anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorg Med Chem Lett, 1999, 9: 1–6

    Article  CAS  Google Scholar 

  20. Oza VB, Smith C, Raman P, Koepf EK, Lashuel HA, Petrassi HM, Chiang KP, Powers ET, Sachettinni J, Kelly JW. Synthesis, structure, and activity of diclofenac analogues as transthyretin amyloid fibril formation inhibitors. J Med Chem, 2002, 45: 321–332

    Article  CAS  Google Scholar 

  21. Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW. Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem, 2004, 47: 355–374

    Article  CAS  Google Scholar 

  22. Choi S, Ong DST, Kelly JW. A stilbene that binds selectively to transthyretin in cells and remains dark until it undergoes a chemoselective reaction to create a bright blue fluorescent conjugate. J Am Chem Soc, 2010, 132: 16043–16051

    Article  CAS  Google Scholar 

  23. Choi S, Reixach N, Connelly S, Johnson SM, Wilson IA, Kelly JW. A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. J Am Chem Soc, 2010, 132: 1359–1370

    Article  CAS  Google Scholar 

  24. Gupta S, Chhibber M, Sinha S, Surolia A. Design of mechanism-based inhibitors of transthyretin amyloidosis: Studies with biphenyl ethers and new structural templates. J Med Chem, 2007, 50: 5589–5599

    Article  CAS  Google Scholar 

  25. Petrassi HM, Johnson SM, Purkey HE, Chiang KP, Walkup T, Jiang X, Powers ET, Kelly JW. Potent and selective structure-based dibenzofuran inhibitors of transthyretin amyloidogenesis: Kinetic stabilization of the native state. J Am Chem Soc, 2005, 127: 6662–6671

    Article  CAS  Google Scholar 

  26. Almeida MR, Macedo B, Cardoso I, Alves I, Valencia G, Arsequell G, Planas A, Saraiva MJ. Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem J, 2004, 381: 351–356

    Article  CAS  Google Scholar 

  27. Gales L, Macedo Ribeiro S, Arsequell G, Valencia G, Saraiva MJ, Damas AM. Human transthyretin in complex with iododiflunisal: Structural features associated with a potent amyloid inhibitor. Biochem J, 2005, 388: 615–621

    Article  CAS  Google Scholar 

  28. Mairal T, Nieto J, Pinto M, Almeida MR, Gales L, Ballesteros A, Barluenga J, Perez JJ, Vazquez JT, Centeno NB, Saraiva MJ, Damas AM, Planas A, Arsequell G, Valencia G. Iodine atoms: A new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors. Plos One, 2009, 4: e4124

    Article  Google Scholar 

  29. Julius RL, Farha OK, Chiang J, Perry LJ, Hawthorne MF. Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proc Natl Acad Sci USA, 2007, 104: 4808–4813

    Article  CAS  Google Scholar 

  30. Razavi H, Palaninathan SK, Powers ET, Wiseman RL, Purkey HE, Mohamedmohaideen NN, Deechongkit S, Chiang KP, Dendle MTA, Sacchettini JC, Kelly JW. Benzoxazoles as transthyretin amyloid fibril inhibitors: Synthesis, evaluation, and mechanism of action. Angew Chem Int Edit, 2003, 42: 2758–2761

    Article  CAS  Google Scholar 

  31. Johnson SM, Petrassi HM, Palaninathan SK, Mohamedmohaideen NN, Purkey HE, Nichols C, Chiang KP, Walkup T, Sacchettini JC, Sharpless KB, Kelly JW. Bisaryloxime ethers as potent inhibitors of transthyretin amyloid fibril formation. J Med Chem, 2005, 48: 1576–1587

    Article  CAS  Google Scholar 

  32. Johnson SM, Connelly S, Wilson IA, Kelly JW. Toward optimization of the linker substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem, 2008, 51: 6348–6358

    Article  CAS  Google Scholar 

  33. Johnson SM, Connelly S, Wilson IA, Kelly JW. Biochemical and structural evaluation of highly selective 2-arylbenzoxazole-based transthyretin amyloidogenesis inhibitors. J Med Chem, 2008, 51: 260–270

    Article  CAS  Google Scholar 

  34. Johnson SM, Connelly S, Wilson IA, Kelly JW. Toward optimization of the second aryl substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem, 2009, 52: 1115–1125

    Article  CAS  Google Scholar 

  35. Wang HF, Tang YH, Lei M. Models for binding cooperativities of inhibitors with transthyretin. Arch Biochem Biophys, 2007, 466: 85–97

    Article  CAS  Google Scholar 

  36. Yang MF, Lei M, Huo SH. Why is Leu55 -> Pro55 transthyretin variant the most amyloidogenic: Insights from molecular dynamics simulations of transthyretin monomers. Protein Sci, 2003, 12: 1222–1231

    Article  CAS  Google Scholar 

  37. Yang MF, Lei M, Bruschweiler R, Huo SH. Initial conformational changes of human transthyretin under partially denaturing conditions. Biophys J, 2005, 89: 433–443

    Article  CAS  Google Scholar 

  38. Yang MF, Yordanov B, Levy Y, Bruschweiler R, Huo SH. The sequence-dependent unfolding pathway plays a critical role in the amyloidogenicity of transthyretin. Biochemistry-US, 2006, 45: 11992–12002

    Article  CAS  Google Scholar 

  39. Armen RS, Alonso DOV, Daggett V. Anatomy of an amyloidogenic intermediate: Conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH. Structure, 2004, 12: 1847–1863

    Article  CAS  Google Scholar 

  40. Armen RS, DeMarco ML, Alonso DOV, Daggett V. Pauling and Corey’s alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci USA, 2004, 101: 11622–11627

    Article  CAS  Google Scholar 

  41. Ortore G, Martinelli A. Computational studies on transthyretin. Curr Med Chem, 2012, 19: 2380–2387

    Article  CAS  Google Scholar 

  42. Wei DG, Yang GF, Wan J, Zhan CG. Binding model construction of antifungal 2-aryl-4-chromanones using CoMFA, CoMSIA, and QSAR analyses. J Agr Food Chem, 2005, 53: 1604–11

    Article  CAS  Google Scholar 

  43. Yang GF, Huang X. Development of quantitative structure-activity relationships and its application in rational drug design. Current Pharm Design, 2006, 12: 4601–11

    Article  CAS  Google Scholar 

  44. Chen Q, Zhu XL, Jiang LL, Liu ZM, Yang GF. Synthesis, antifungal activity and CoMFA analysis of novel l,2,4-triazolo-1,5-a pyrimidine derivatives. Europ J Med Chem, 2008, 43: 595–603

    Article  CAS  Google Scholar 

  45. He Y, Niu C, Li H, Wen X, Xi Z. Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac. Sci China Chem, 2013, 56: 286–95

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

    Google Scholar 

  47. He YZ, Li YX, Zhu XL, Xi Z, Niu C, Wan J, Zhang L, Yang GF. Rational design based on bioactive conformation analysis of pyrimidinylbenzoates as acetohydroxyacid synthase inhibitors by integrating molecular docking, CoMFA, CoMSIA, and DFT calculations. J Chem Inf Model, 2007, 47: 2335–44

    Article  CAS  Google Scholar 

  48. Zhang L, Cui ZN, Yin B, Yang GF, Ling Y, Yang XL. QSAR and 3D-QSAR studies of the diacyl-hydrazine derivatives containing furan rings based on the density functional theory. Sci China Chem, 2010, 53: 1322–1331

    Article  CAS  Google Scholar 

  49. Lee SH, Van HT, Yang SH, Lee KT, Kwon Y, Cho WJ. Molecular design, synthesis and docking study of benz[b]oxepines and 12-oxobenzo[c]phenanthridinones as topoisomerase 1 inhibitors. Bioorg Med Chem Lett, 2009, 19: 2444–2447

    Article  CAS  Google Scholar 

  50. Sun J, Cai S, Yan N, Mei H. Docking and 3D-QSAR studies of influenza neuraminidase inhibitors using three-dimensional holographic vector of atomic interaction field analysis. Europ J Med Chem, 2010, 45: 1008–1014

    Article  CAS  Google Scholar 

  51. Ruppert J, Welch W, Jain AN. Automatic identification and representation of protein binding sites for molecular docking. Protein Sci, 1997, 6: 524–533

    Article  CAS  Google Scholar 

  52. Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol, 2010, 20: 54–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Zhang, L. & Lei, M. 3D-QSAR and docking studies on 2-arylbenzoxazole and linker-Y transthyretin amyloidogenesis inhibitors. Sci. China Chem. 56, 1550–1563 (2013). https://doi.org/10.1007/s11426-013-4894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4894-9

Keywords

Navigation