Skip to main content
Log in

Interaction specific binding hotspots in Endonuclease colicin-immunity protein complex from MD simulations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex. In the current work, MD simulations of the WT and three hotspot mutants (D51A, Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues. The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values, verifying that these three residues were indeed hotspots of the binding complex. Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89. For binding by hotspots Y54 and Y55, van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction. For comparison, calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation. Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex. The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keskin O, Gursoy A, Ma B, Nussinov R. Principles of protein-protein interactions: What are the preferred ways for proteins to interact? Chem Rev, 2008, 108: 1225–1244

    Article  CAS  Google Scholar 

  2. Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA, 1996, 93: 13–20

    Article  CAS  Google Scholar 

  3. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev, 2000, 14: 1027–1047

    CAS  Google Scholar 

  4. Schreiber G, Haran G, Zhou HX. Fundamental aspects of protein-protein association kinetics. Chem Rev, 2009, 109: 839–860

    Article  CAS  Google Scholar 

  5. Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol, 1999, 285: 2177–2198

    Article  Google Scholar 

  6. Northrup SH, Erickson HP. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci USA, 1992, 89: 3338–3342

    Article  CAS  Google Scholar 

  7. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. Correlated mutations contain information about protein-protein interaction. J Mol Biol, 1997, 271: 511–523

    Article  CAS  Google Scholar 

  8. Kuhlmann UC, Pommer AJ, Moore GR, James R, Kleanthous C. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J Mol Biol, 2000, 301: 1163–1178

    Article  CAS  Google Scholar 

  9. Kleanthous C, Kuhlmann UC, Pommer AJ, Ferguson N, Radford SE, Moore GR, James R, Hemmings AM. Structural and mechanistic basis of immunity toward endonuclease colicins. Nat Struct Biol, 1999, 6: 243–252

    Article  CAS  Google Scholar 

  10. Wallis R, Leung KY, Osborne MJ, James R, Moore GR, Kleanthous C. Specificity in protein-protein recognition: Conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Biochemistry, 1998, 37: 476–485

    Article  CAS  Google Scholar 

  11. Keeble AH, Joachimiak LA, Mate MJ, Meenan N, Kirkpatrick N, Baker D, Kleanthous C. Experimental and computational analyses of the energetic basis for dual recognition of immunity proteins by colicin endonucleases. J Mol Biol, 2008, 379: 745–759

    Article  CAS  Google Scholar 

  12. Wong SE, Baron R, McCammon JA. Hot-spot residues at the E9/Im9 interface help binding via different mechanisms. Biopolymers, 2008, 89: 916–920

    Article  CAS  Google Scholar 

  13. Baron R, Wong SE, de Oliveira CA, McCammon JA. E9-Im9 colicin DNase-immunity protein biomolecular association in water: A multiple-copy and accelerated molecular dynamics simulation study. J Phys Chem B, 2008, 112: 16802–16814

    Article  CAS  Google Scholar 

  14. Bida AT, Gil D, Schrum AG. Multiplex IP-FCM (immunoprecipitation-flow cytometry): Principles and guidelines for assessing physiologic protein-protein interactions in multiprotein complexes. Methods, 2012, 56: 154–160

    Article  CAS  Google Scholar 

  15. Khan SH, Ahmad F, Ahmad N, Flynn DC, Kumar R. Protein-protein interactions: Principles, techniques, and their potential role in new drug development. J Biomol Struct Dyn, 2011, 28: 929–938

    Article  CAS  Google Scholar 

  16. Schreiber G, Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol, 1995, 248: 478–486

    CAS  Google Scholar 

  17. Schreiber G, Fersht AR. Rapid, electrostatically assisted association of proteins. Nat Struct Biol, 1996, 3: 427–431

    Article  CAS  Google Scholar 

  18. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002, 417: 399–403

    Article  Google Scholar 

  19. Muegge I, Schweins T, Warshel A. Electrostatic contributions to protein-protein binding affinities: Application to Rap/Raf interaction. Proteins, 1998, 30: 407–423

    Article  CAS  Google Scholar 

  20. Elcock AH, Sept D, McCammon JA. Computer simulation of protein-protein interactions. J Phys Chem B, 2001, 105: 1504–1518

    Article  CAS  Google Scholar 

  21. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403: 623–627

    Article  CAS  Google Scholar 

  22. Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies. J Am Chem Soc, 1999, 121: 8133–8143

    Article  CAS  Google Scholar 

  23. Lee LP, Tidor B. Barstar is electrostatically optimized for tight binding to barnase. Nat Struct Mol Biol, 2001, 8: 73–76

    Article  CAS  Google Scholar 

  24. Dong F, Zhou HX. Electrostatic contribution to the binding stability of protein-protein complexes. Proteins, 2006, 65: 87–102

    Article  CAS  Google Scholar 

  25. Kundrotas PJ, Alexov E. Electrostatic properties of protein-protein complexes. Biophys J, 2006, 91: 1724–1736

    Article  CAS  Google Scholar 

  26. Sheinerman FB, Honig B. On the role of electrostatic interactions in the design of protein-protein interfaces. J Mol Biol, 2002, 318: 161–177

    Article  CAS  Google Scholar 

  27. Brock K, Talley K, Coley K, Kundrotas P, Alexov E. Optimization of electrostatic interactions in protein-protein complexes. Biophys J, 2007, 93: 3340–3352

    Article  CAS  Google Scholar 

  28. Talley K, Ng C, Shoppell M, Kundrotas P, Alexov E. On the electrostatic component of protein-protein binding free energy. PMC Biophys, 2008, 1: 2

    Article  Google Scholar 

  29. Xie W, Gao J. The design of a next generation force field: The X-pol potential. J Chem Theory Comput, 2007, 3: 1890–1900

    Article  CAS  Google Scholar 

  30. Xie W, Orozco M, Truhlar DG, Gao J. X-pol potential: An electronic structure-based force field for molecular dynamics simulation of a solvated protein in water. J Chem Theory Comput, 2009, 5: 459–467

    Article  CAS  Google Scholar 

  31. Ababou A, van der Vaart A, Gogonea V, Merz KM Jr. Interaction energy decomposition in protein-protein association: A quantum mechanical study of barnase-barstar complex. Biophys Chem, 2007, 125: 221–236

    Article  CAS  Google Scholar 

  32. Ji CG, Zhang JZ. Effect of interprotein polarization on protein-protein binding energy. J Comput Chem, 2012, 33: 1416–1420

    CAS  Google Scholar 

  33. Ji CG, Zhang JZ. Protein polarization is critical to stabilizing AF-2 and helix-2′ domains in ligand binding to PPAR-gamma. J Am Chem Soc, 2008, 130: 17129–17133

    Article  CAS  Google Scholar 

  34. Ji CG, Zhang JZ. NMR scalar coupling constant reveals that intraprotein hydrogen bonds are dynamically stabilized by electronic polarization. J Phys Chem B, 2009, 113: 13898–13900

    Article  CAS  Google Scholar 

  35. Tong Y, Ji CG, Mei Y, Zhang JZ. Simulation of NMR data reveals that proteins’ local structures are stabilized by electronic polarization. J Am Chem Soc, 2009, 131: 8636–8641

    Article  CAS  Google Scholar 

  36. Tong Y, Mei Y, Li YL, Ji CG, Zhang JZ. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. J Am Chem Soc, 2010, 132: 5137–5142

    Article  CAS  Google Scholar 

  37. Chong LT, Duan Y, Wang L, Massova I, Kollman PA. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci USA, 1999, 96: 14330–14335

    Article  CAS  Google Scholar 

  38. Cornell WD, Cieplak P, Bayly CI, Kollman PA. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc, 1993, 115: 9620–9631

    Article  CAS  Google Scholar 

  39. Cieplak P, Cornell WD, Bayly C, Kollman PA. Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derication for DNA, RNA, and proteins. J Comput Chem, 1995, 16: 1357–1377

    Article  CAS  Google Scholar 

  40. Bayly CI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J Phys Chem, 1993, 97: 10269–10280

    Article  CAS  Google Scholar 

  41. Ji CG, Mei Y, Zhang JZ. Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin. Biophys J, 2008, 95: 1080–1088

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision D.01, Wallingford: Gaussian, Inc., CT, 2003

    Google Scholar 

  43. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem, 2002, 23: 128–137

    Article  CAS  Google Scholar 

  44. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker R, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA. AMBER 10. San Francisco: University of California, 2008

    Google Scholar 

  45. Jorgensen WL, Chandrasckhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79: 926–935

    Article  CAS  Google Scholar 

  46. Darden T, York D, Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089–10092

    Article  CAS  Google Scholar 

  47. Sanner MF, Olson AJ, Spehner JC. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 1996, 38: 305–320

    Article  CAS  Google Scholar 

  48. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE, 3rd. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res, 2000, 33: 889–897

    Article  CAS  Google Scholar 

  49. Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug DiscoVery Des, 2000, 18: 113–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangGe Ji or John Z. H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Ji, C., Xie, D. et al. Interaction specific binding hotspots in Endonuclease colicin-immunity protein complex from MD simulations. Sci. China Chem. 56, 1143–1151 (2013). https://doi.org/10.1007/s11426-013-4877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4877-x

Keywords

Navigation