Skip to main content

Free-Energy Landscape of Intrinsically Disordered Proteins Investigated by All-Atom Multicanonical Molecular Dynamics

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

We introduce computational studies on intrinsically disordered proteins (IDPs). Especially, we present our multicanonical molecular dynamics (McMD) simulations of two IDP-partner systems: NRSF–mSin3 and pKID–KIX. McMD is one of enhanced conformational sampling methods useful for conformational sampling of biomolecular systems. IDP adopts a specific tertiary structure upon binding to its partner molecule, although it is unstructured in the unbound state (i.e. the free state). This IDP-specific property is called “coupled folding and binding”. The McMD simulation treats the biomolecules with an all-atom model immersed in an explicit solvent. In the initial configuration of simulation, IDP and its partner molecules are set to be distant from each other, and the IDP conformation is disordered. The computationally obtained free-energy landscape for coupled folding and binding has shown that native- and non-native-complex clusters distribute complicatedly in the conformational space. The all-atom simulation suggests that both of induced-folding and population-selection are coupled complicatedly in the coupled folding and binding. Further analyses have exemplified that the conformational fluctuations (dynamical flexibility) in the bound and unbound states are essentially important to characterize IDP functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berg BA, Neuhaus T (1992) Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett 68:9–12

    Article  PubMed  Google Scholar 

  2. Bosshard HR (2001) Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 16:171–173

    CAS  PubMed  Google Scholar 

  3. Chen J (2009) Intrinsically disordered p53 extreme C-terminus binds to S100B(ββ) through “fly-casting”. J Am Chem Soc 131:2088–2089

    Article  CAS  PubMed  Google Scholar 

  4. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  5. De Guzman RN, Goto NK, Dyson HJ, Wright PE (2006) Structural basis for cooperative transcription factor binding to the CBP coactivator. J Mol Biol 355:1005–1013

    Article  PubMed  Google Scholar 

  6. Ding H-Q, Karasawa N, Goddard WA (1992) Atomic level simulations on a million particles: the cell multipole method for Coulomb and London nonbond interactions. J Chem Phys 97:4309–4315

    Article  CAS  Google Scholar 

  7. Domenico TD, Walsh I, Martin AJM, Tosatto SCE (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28:2080–2081

    Article  PubMed  Google Scholar 

  8. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  CAS  PubMed  Google Scholar 

  9. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  10. Fukuchi S, Homma K, Minezaki Y, Gojobori T, Nishikawa K (2009) Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. BMC Struct Biol 9:26

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fukuchi S, Homma K, Sakamoto S, Sugawara H, Tateno Y, Gojobori T, Nishikawa K (2009) The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions. Nucleic Acids Res 37:D333–D337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fukuchi S, Sakamoto S, Nobe Y, Murakami DS, Amemiya T, Hosoda K, Koike R, Hiroaki H, Ota M (2012) IDEAL: intrinsically disordered proteins with extensive annotations and literature. Nucleic Acids Res 40:D507–D511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4:728–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Go N (1983) Theoretical studies of protein folding. Annu Rev Biophys Bioeng 12:183–210

    Article  CAS  PubMed  Google Scholar 

  15. Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002) Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). J Biol Chem 277:43168–43174

    Article  CAS  PubMed  Google Scholar 

  16. Hansmann UHE, Okamoto Y (1993) Prediction of peptide conformation by multicanonical algorithm: new approach to the multiple-minima problem. J Comput Chem 14:1333–1338

    Article  CAS  Google Scholar 

  17. Hansmann UHE, Okamoto Y, Eisenmenger F (1996) Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble. Chem Phys Lett 259:321–330

    Article  CAS  Google Scholar 

  18. Higo J, Ikebe J, Kamiya N, Nakamura H (2012) Enhanced and effective conformational sampling of protein molecular systems for their free energy landscapes. Biophys Rev 4:27–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Higo J, Ito N, Kuroda M, Ono S, Nakajima N, Nakamura H (2001) Energy landscape of a peptide consisting of α-helix, 310-helix, β-turn, β-hairpin, and other disordered conformations. Protein Sci 10:1160–1171

    Article  CAS  PubMed  Google Scholar 

  20. Higo J, Kamiya N, Sugihara T, Yonezawa Y, Nakamura H (2009) Verifying trivial parallelization of multicanonical molecular dynamics for conformational sampling of a polypeptide in explicit water. Chem Phys Lett 473:326–329

    Article  CAS  Google Scholar 

  21. Higo J, Nishimura Y, Nakamura H (2011) A free-energy landscape for coupled folding and binding of an intrinsically disordered protein in explicit solvent from detailed all-atom computations. J Am Chem Soc 133:10448–10458

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Liu Z (2009) Kinetic advantage of intrinsically disordered proteins in coupled folding–binding process: a critical assessment of the “fly-casting” mechanism. J Mol Biol 393:1143–1159

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y, Liu Z (2011) Anchoring intrinsically disordered proteins to multiple targets: lessons from N-terminus of the p53 protein. Int J Mol Sci 12:1410–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  CAS  PubMed  Google Scholar 

  25. Ikebe J, Kamiya N, Shindo H, Nakamura H, Higo J (2007) Conformational sampling of a 40-residue protein consisting of α and β secondary-structure elements in explicit solvent. Chem Phys Lett 443:364–368

    Article  CAS  Google Scholar 

  26. Ikebe J, Standley DM, Nakamura H, Higo J (2011) Ab initio simulation of a 57-residue protein in explicit solvent reproduces the native conformation in the lowest free-energy cluster. Protein Sci 20:187–196

    Article  CAS  PubMed  Google Scholar 

  27. Ikebe J, Umezawa K, Kamiya N, Sugihara T, Yonezawa Y, Takano Y, Nakamura H, Higo J (2011) Theory for trivial trajectory parallelization of multicanonical molecular dynamics and application to a polypeptide in water. J Comput Chem 32:1286–1297

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda K, Galzitskaya OV, Nakamura H, Higo J (2003) β-hairpins, α-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal β-hairpin of SH3 domain. J Comput Chem 24:310–318

    Article  CAS  PubMed  Google Scholar 

  29. James LC, Tawfik DS (2003) Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368

    Article  CAS  PubMed  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  31. Kamiya N, Higo J, Nakamura H (2002) Conformational transition states of beta-hairpin peptide between the ordered and disordered conformations in explicit water. Protein Sci 11:2297–2307

    Article  CAS  PubMed  Google Scholar 

  32. Kamiya N, Watanabe YS, Ono O, Higo J (2005) AMBER-based hybrid force field for conformational sampling of polypeptides. Chem Phys Lett 401:312–317

    Article  CAS  Google Scholar 

  33. Kamiya N, Yonezawa Y, Nakamura H, Higo J (2008) Protein-inhibitor flexible docking by a multicanonical sampling: native complex structure with the lowest free energy and a free-energy barrier distinguishing the native complex from the others. Proteins 70:41–53

    Article  CAS  PubMed  Google Scholar 

  34. Kidera A (1995) Enhanced conformational sampling in Monte Carlo simulations of proteins: applications to a constrained peptide. Proc Natl Acad Sci USA 92:9886–9889

    Article  CAS  PubMed  Google Scholar 

  35. Kollman PA, Dixon RW, Cornell WD, Chipot C, Pohorille A (1997) The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of Ab initio calculations and experimental data. In computer simulations of biological systems. Comput Simul Biomol Syst Theor Exp Appl 3:83–96

    Article  Google Scholar 

  36. Lawrence CW, Showalter SA (2012) Carbon-detected 15N NMR spin relaxation of an intrinsically disordered protein: FCP1 dynamics unbound and in complex with RAP74. J Phys Chem Lett 3:1409–1413

    Article  CAS  Google Scholar 

  37. Matsushita K, Kikuchi M (2013) Frustration-induced protein intrinsic disorder. J Chem Phys 138:105101

    Article  PubMed  Google Scholar 

  38. Metallo SJ (2010) Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 14:481–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  40. Morikami K, Nakai T, Kidera A, Saito M, Nakamura H (1992) PRESTO (PRotein Engineering SimulaTOr): a vectorized molecular mechanics program for biopolymers. Comput Chem 16:243–248

    Article  CAS  Google Scholar 

  41. Moritsugu K, Terada T, Kidera A (2012) Disorder-to-order transition of an intrinsically disordered region of sortase revealed by multiscale enhanced sampling. J Am Chem Soc 134:7094–7101

    Article  CAS  PubMed  Google Scholar 

  42. Nakajima N, Nakamura H, Kidera A (1997) Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. J Phys Chem 101:817–824

    Article  CAS  Google Scholar 

  43. Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y (2005) The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. J Mol Biol 354:903–915

    Article  CAS  PubMed  Google Scholar 

  44. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D2P2: database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Okazaki K, Takada S (2008) Dynamic energy landscape view of coupled binding and protein conformational change: induced-fit versus population-shift mechanisms. Proc Natl Acad Sci USA 105:11182–11187

    Article  CAS  PubMed  Google Scholar 

  46. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989–2000

    Article  CAS  PubMed  Google Scholar 

  47. Patil A, Kinoshita K, Nakamura H (2010) Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Sci 19:1461–1468

    Article  CAS  PubMed  Google Scholar 

  48. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein-protein interaction networks. Int J Mol Sci 11:1930–1943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Radhakrishnan I, Pérez-Alvarado GC, Dyson HJ, Wright PE (1998) Conformational preferences in the ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett 430:317–322

    Article  CAS  PubMed  Google Scholar 

  50. Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91:741–752

    Article  CAS  PubMed  Google Scholar 

  51. Sancho DD, Best RB (2012) Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF1α with CBP. Mol Biosyst 8:256–267

    Article  PubMed  Google Scholar 

  52. Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873

    Article  CAS  PubMed  Google Scholar 

  53. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777–784

    Article  CAS  PubMed  Google Scholar 

  55. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  CAS  PubMed  Google Scholar 

  56. Terakawa T, Takada S (2011) Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain. Biophys J 101:1450–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem Sci 33:2–8

    Article  CAS  PubMed  Google Scholar 

  58. Umezawa K, Ikebe J, Takano M, Nakamura H, Higo J (2012) Conformational ensembles of an intrinsically disordered protein pKID with and without a KIX domain in explicit solvent investigated by all-Atom multicanonical molecular dynamics. Biomolecules 2:104–121

    Article  CAS  Google Scholar 

  59. Wang J, Wang Y, Chu X, Hagen SJ, Han W, Wang E (2011) Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme. PLoS Comput Biol 7:e1001118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  61. Wostenberg C, Kumar S, Noid WG, Showalter SA (2011) Atomistic simulations reveal structural disorder in the RAP74-FCP1 complex. J Phys Chem B 115:13731–13739

    Article  CAS  PubMed  Google Scholar 

  62. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  CAS  PubMed  Google Scholar 

  63. Yamane T, Okamura H, Nishimura Y, Kidera A, Ikeguchi M (2010) Side-chain conformational changes of transcription factor PhoB upon DNA binding: a population-shift mechanism. J Am Chem Soc 132:12653–12659

    Article  CAS  PubMed  Google Scholar 

  64. Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (2002) Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-myb) and inducible (CREB) activators. J Biol Chem 277:42241–42248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Both authors were supported by a Grant-in-Aid for Scientific Research on Innovative Areas (21113006) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan. J.H. was supported by grants from the New Energy and Industrial Technology Development Organization (NEDO) Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Higo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Higo, J., Umezawa, K. (2014). Free-Energy Landscape of Intrinsically Disordered Proteins Investigated by All-Atom Multicanonical Molecular Dynamics. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_14

Download citation

Publish with us

Policies and ethics