Skip to main content
Log in

Electroluminescence performances of 1,1-bis(4-(N,N-dimethylamino)phenyl)-2,3,4,5-tetraphenylsilole based polymers in three cathode architectures

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new silole monomer with two 4-(N,N-dimethylamino)phenyl substitutions on silicon atom as designed and synthesized. Three copolymers PF-N-HPS1, PF-N-HPS10 and PF-N-HPS20 were then obtained by copolymerizations of 2,7-fluorene derivatives with the silole monomer at feed ratios of 1%, 10%, and 20%. Their UV-vis absorption, electrochemical, photoluminescent, and electroluminescent (EL) properties were investigated. PF-N-HPS possessed HOMO levels of −5.25–−5.58 eV, and showed green emissions. Using PF-N-HPS as the emissive layer, three different polymer light-emitting diodes were fabricated as device A with ITO/PEDOT/PF-N-HPS/Al, device B with ITO/PEDOT/PF-N-HPS/Ba/Al, and device C with ITO/PEDOT/PF-N-HPS/TPBI/Ba/Al. For the device A, PF-N-HPS only showed very low EL efficiency of 0.06–0.33 cd/A, indicating that the Al cathode could not inject electron efficiently to the emissive polymers containing the 4-(N,N-dimethylamino)phenyl groups. For the device B, low work function Ba supplied better electron injections, and the EL efficiency could be improved to 0.85–1.44 cd/A. TPBI with a deep HOMO level of −6.2 eV could enhance electron transport and hole blocking. Thus modified recombinations and largely elevated EL efficiency of 4.56–7.96 cd/A were achieved for the device C. The separation of the emissive layer and metal cathode with the TPBI layer may also suppress exciton quenching at the cathode interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corey JY. Siloles: Part 1: Synthesis, characterization, and applications. Adv Organomet Chem, 2011, 59: 1–180

    Article  CAS  Google Scholar 

  2. Yamaguchi S, Tamao K. Silole-containing σ- and π-conjugated compounds. J Chem Soc, Dalton Trans, 1998, 3693–3702

    Google Scholar 

  3. Murata H, Malliaras GG, Uchida M, Shen Y, Kafafi ZH. Non-dispersive and air-stable electron transport in an amorphous organic semiconductor. Chem Phys Lett, 2001, 339: 161–166

    Article  CAS  Google Scholar 

  4. Chen JW, Law CCW, Lam JWY, Dong YP, Lo SMF, Williams ID, Zhu DB, Tang BZ. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater, 2003, 15: 1535–1546

    Article  CAS  Google Scholar 

  5. Li HK, Mei J, Wang J, Zhang S, Zhao QL, Wei Q, Qin AJ, Sun JZ, Tang BZ. Facile synthesis of poly(aroxycarbonyltriazole)s with aggregation-induced emission characteristics by metal-free click polymerization. Sci China Chem, 2011, 54: 611–616

    Article  CAS  Google Scholar 

  6. Qin AJ, Zhang Y, Han N, Mei J, Sun JZ, Fan WM, Tang BZ. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. Sci China Chem, 2012, 55: 772–778

    Article  CAS  Google Scholar 

  7. Liu JZ, Lam JWY, Tang BZ. Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym, 2009, 19: 249–285

    Article  CAS  Google Scholar 

  8. Chen JW, Xu B, Yang KX, Cao Y, Sung HHY, Williams ID, Tang BZ. Photoluminescence spectral reliance on aggregation order of 1,1-bis(2′-thienyl)-2,3,4,5-tetraphenylsilole. J Phys Chem B, 2005, 109: 17086–17093

    Article  CAS  Google Scholar 

  9. Wang ZQ, Zheng CJ, Liu H, Ou XM, Zhang XH. Efficient and stable non-doped deep-blue organic light emitting diode based on an anthracene derivative. Sci China Chem, 2011, 54: 666–670

    Article  CAS  Google Scholar 

  10. Zhang J, Yang Y, He C, Li YF. Red-emission organic light-emitting diodes based on solution-processable molecules with triphenylamine core and benzothiadiazole-thiophene arms. Sci China Chem, 2011, 54: 695–698

    Article  CAS  Google Scholar 

  11. Chen HY, Chen JW, Qiu CF, Tang BZ, Wong M, Kwok HS. Efficient and bright OLED based on hexaphenylsilole. SID Digest, 2003, 509–511

  12. Chen JW, Cao Y. Silole-containing polymers: Chemistry and optoelectronic properties. Macromol Rapid Commun, 2007, 28: 1714–1742

    Article  CAS  Google Scholar 

  13. Wang F, Luo J, Chen JW, Huang F, Cao Y. Conjugated random and alternating 2,3,4,5-tetraphenylsilole-containing polyfluorenes: synthesis, characterization, strong solution photoluminescence, and light-emitting diodes. Polymer, 2005, 46: 8422–8429

    Article  CAS  Google Scholar 

  14. Liu ZT, Zou JH, Chen JW, Huang L, Peng JB, Cao Y. Largely enhanced LED efficiency of carbazole-fluorene-silole copolymers by using TPBI hole blocking layer. Polymer, 2008, 49: 1604–1610

    Article  CAS  Google Scholar 

  15. Usta H, Lu G, Facchetti A, Marks TJ. Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. J Am Chem Soc, 2006, 128: 9034–9035

    Article  CAS  Google Scholar 

  16. Li ZG, Zhao XY, Li X, Gao ZQ, Mi BX, Huang W. Organic thin-film solar cells: Devices and materials. Sci China Chem, 2012, 55: 553–578

    Article  CAS  Google Scholar 

  17. Chu TY, Lu JP, Beaupre S, Zhang YG, Pouliot JR, Wakim S, Zhou JY, Leclerc M, Li Z, Ding JP, Tao Y. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J Am Chem Soc, 2011, 133: 4250–4253

    Article  CAS  Google Scholar 

  18. Wang EG, Wang L, Lan L, Luo C, Zhuang WL, Peng JB, Cao Y. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett, 2008, 92: 033307

    Article  Google Scholar 

  19. Liu Z, Wang L, Chen JW, Wang F, Ouyang XY, Cao Y. Synthesis and optoelectronic properties of silole-containing polyfluorenes with binary structures. J Polym Sci Part A Polym Chem, 2007, 45: 756–767

    Article  CAS  Google Scholar 

  20. Wang F, Luo J, Yang KX, Chen JW, Huang F, Cao Y. Conjugated fluorene and silole copolymers: Synthesis, characterization, electronic transition, light emission, photovoltaic cell, and field effect hole mobility. Macromolecules, 2005, 38: 2253–2260

    Article  Google Scholar 

  21. Liu ZT, Zhou JH, Chen JW, Liu YQ, Peng JB, Cao Y. Highly efficient red light-emitting diodes based on silole-containing polycarbazole. Acta Polymerica Sinica, 2009, 845–851

  22. Wang F, Wang L, Chen JW, Cao Y. Simple silole-containing polyfluorene for white electroluminescence with simultaneous blue, green, and red emission. Macromol Rapid Commun, 2007, 28: 2012–2018

    Article  CAS  Google Scholar 

  23. Zhang K, Liu SJ, Guan X, Duan CH, Zhang J, Zhong CM, Wang L, Huang F, Cao Y. Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes. Sci China Chem, 2012, 55: 766–771

    Article  CAS  Google Scholar 

  24. Huang F, Wu HB, Wang DL, Yang W, Cao Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater, 2004, 16: 708–716

    Article  CAS  Google Scholar 

  25. Wu HB, Huang F, Peng JB, Cao Y. High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org Electron, 2005, 6: 118–128

    Article  CAS  Google Scholar 

  26. Zhang LJ, He C, Chen JW, Yuan P, Huang L, Zhang C, Cai WZ, Liu ZT, Cao Y. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode. Macromolecules, 2010, 43: 9771–9778

    Article  CAS  Google Scholar 

  27. He ZC, Zhang C, Xu XF, Zhang LJ, Huang L, Chen JW, Wu HB, Cao Y. Largely enhanced efficiency with PFN/Al bilayer cathode in high efficiency bulk-heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv Mater, 2011, 23: 3086–3089

    Article  CAS  Google Scholar 

  28. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591–596

    Google Scholar 

  29. Zhang WS, Lu Ping, Wang ZM, Ma YG. Exploration of structure and mechanism of insoluble gels formed in microwave-assisted Suzuki coupling for poly(9,9-dihexylfluorene)s. Sci China Chem, 2012, 55: 844–849

    Article  CAS  Google Scholar 

  30. Wang M, Li Y, Xie ZY, Wang LX. Polyfluorenes containing pyrazine units: Synthesis, photophysics and electroluminescence. Sci China Chem, 2011, 54: 656–665

    Article  CAS  Google Scholar 

  31. Guo ZS, Liu DA, Wang C, Pei J, Zhou ZL, Zhao LH, Gibson G, Brug J, Lam S, Mao SS. Phosphine oxide-functionalized polyfluorene derivatives: Synthesis, photophysics, electrochemical properties, and electroluminescence performance. Sci China Chem, 2011, 54: 678–684

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunWu Chen.

Additional information

Recommended by QIU Yong (Tsinghua University)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Hu, S., Zhang, L. et al. Electroluminescence performances of 1,1-bis(4-(N,N-dimethylamino)phenyl)-2,3,4,5-tetraphenylsilole based polymers in three cathode architectures. Sci. China Chem. 56, 1129–1136 (2013). https://doi.org/10.1007/s11426-013-4875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4875-z

Keywords

Navigation