Skip to main content
Log in

Adaptive coupling-enhanced spiking synchronization in Newman-Watts neuronal networks with time delays

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we study how adaptive coupling with time-periodic growth speed (TPGS) affects the spiking synchronization of weighted adaptive Newman-Watts Hodgkin-Huxley neuron networks with time delays. It is found that the neuronal spiking intermittently exhibits synchronization transitions between desynchronization and in-phase synchronization or anti-phase synchronization as TPGS amplitude or frequency is varied, showing multiple synchronization transitions. These transitions depend on the values of time delay and can occur only when time delay is close to those values that can induce synchronization transitions when the growth speed is fixed. These results show that the adaptive coupling with TPGS has great influence on the spiking synchronization of the neuronal networks and thus plays a crucial role in the information processing and transmission in neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol, 1993, 55: 349–374

    Article  CAS  Google Scholar 

  2. Gray CM. The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron, 1999, 24: 31–47

    Article  CAS  Google Scholar 

  3. Fries P, Nikolić D, Singer W. The gamma cycle. Trends Neurosci, 2007, 30: 309–316

    Article  CAS  Google Scholar 

  4. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the sub-thalamic nucleus of Parkinsonian patients with limb tremor. J Neurosci, 2000, 20: 7766–7775

    CAS  Google Scholar 

  5. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res, 2003, 53:173–185

    Article  Google Scholar 

  6. Zhou CS, Kurths J. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401–409

    Article  Google Scholar 

  7. Bahar S. Burst-enhanced synchronization in an array of noisy coupled neurons. Fluct Noise Lett, 2004, 4: L87–L96

    Article  Google Scholar 

  8. Yoshioka M. Chaos synchronization in gap-junction-coupled neurons. Phys Rev E, 2005, 71: 065203

    Article  Google Scholar 

  9. Wang QY, Lu QS, Chen GR. Subthreshold stimulus-aided temporal order and synchronization in a square lattice noisy neuronal network. EPL, 2007, 77: 10004

    Article  Google Scholar 

  10. Hasegawa H. Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings. Phys Rev E, 2005, 72: 056139

    Article  Google Scholar 

  11. Gong YB, Wang MS, Hou ZH, Xin HW. Optimal spike coherence and synchronization on complex Hodgkin-Huxley neuron networks. Chem Phys Chem, 2005, 6: 1042–1047

    Article  CAS  Google Scholar 

  12. Gong YB, Xu B, Xu Q, Yang CL, Ren TQ, Hou ZH, Xin HW. Ordering spatiotemporal chaos in complex thermosensitive neuron networks. Phys Rev E, 2006, 73: 0 46137

    Article  Google Scholar 

  13. Wei DQ, Luo XS. Ordering spatiotemporal chaos in discrete neural networks with small-world connections. EPL, 2007, 78: 68004

    Article  Google Scholar 

  14. Zheng YH, Lu QS. Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network. Phys A, 2008, 387:3719–3728

    Article  Google Scholar 

  15. Wang QY, Lu QS, Chen GR. Ordered bursting synchronization and complex wave propagation in a ring neuronal network. Phys A, 2007, 374: 869–878

    Article  Google Scholar 

  16. Ibarz B, Cao HJ, Sanjuán MAF. Bursting regimes in map-based neuron models coupled through fast threshold modulation. Phys Rev E, 2008, 77: 051918

    Article  Google Scholar 

  17. Perc M. Optimal spatial synchronization on scale-free networks via noisy chemical synapses. Biophys Chem, 2009, 141:175–179

    Article  CAS  Google Scholar 

  18. Shen Y, Hou ZH, Xin HW. Transition to burst synchronization in coupled neuron networks. Phys Rev E, 2008, 77: 031920

    Article  Google Scholar 

  19. Postnova S, Voigt K, Braun HA. Neural synchronization at tonictobursting transitions. J Biol Phys, 2007, 33: 129–143

    Article  Google Scholar 

  20. Dhamala M, Jirsa VK, Ding MZ. Enhancement of neural synchrony by time delay. Phys Rev Lett, 2004, 94: 074104

    Article  Google Scholar 

  21. Rossoni E, Chen YH, Ding MZ, Feng JF. Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys Rev E, 2005, 71: 061904

    Article  Google Scholar 

  22. Ko TW, Ermentrout GB. Effects of axonal time delay on synchronization and wave formation in sparsely coupled neuronal oscillators. Phys Rev E, 2007, 76: 056206

    Article  Google Scholar 

  23. Roxin A, Brunel N, Hansel D. Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett, 2005, 94: 238103

    Article  Google Scholar 

  24. Wang QY, Perc M, Duan ZS, Chen GR. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys Lett A, 2008, 372: 5681–5687

    Article  CAS  Google Scholar 

  25. Gosak M, Markovič R, Marhl M. The role of neural architecture and the speed of signal propagation in the process of synchronization of bursting neurons. Physica A, 2012, 391: 2764–2770

    Article  Google Scholar 

  26. Wang QY, Perc M, Duan ZS, Chen GR. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112

    Article  Google Scholar 

  27. Hao YH, Gong YB, Lin X, Ma XG. Delay-induced coherence bi-resonance-like behavior in stochastic Hodgkin-Huxley neuron networks. Sci China Chem, 2010, 53: 1762–1766

    Article  CAS  Google Scholar 

  28. Lin X, Gong YB, Wang Li, Ma XG. Coherence resonance and bi-resonance by time-periodic coupling strength in Hodgkin-Huxley neuron networks. Sci China Chem, 2012, 55: 256–261

    Article  CAS  Google Scholar 

  29. Hao YH, Gong YB, Lin X. Multiple resonances with time delays in scale-free networks of Hodgkin-Huxley neurons subjected to non-Gaussian noise. Sci China Chem, 2011, 54: 782–787

    Article  CAS  Google Scholar 

  30. Wang QY, Duan ZS, Perc M, Chen GR. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability. EPL, 2008, 83: 50008

    Article  Google Scholar 

  31. Wang QY, Perc M, Duan ZS, Chen GR. Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E, 2009, 80: 026206

    Article  Google Scholar 

  32. Wang QY, Chen GR, Perc M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE, 2011, 6: e15851

    Article  CAS  Google Scholar 

  33. Burić N, Todorović K, Vasović N. Synchronization of bursting neurons with delayed chemical synapses. Phys Rev E, 2008, 78: 036211

    Article  Google Scholar 

  34. Wang QY, Lu QS, Chen GR, Feng ZS, Duan LX. Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos Soliton Fract, 2009, 39: 918–925

    Article  Google Scholar 

  35. Wang, QY Lu QS, Chen GR. Synchronization transition by synaptic delay in coupled fast spiking neurons. Int J Bifurcat Chaos, 2008, 18:1189–1198

    Article  Google Scholar 

  36. Xie YH, Gong YB, Hao YH, Ma XG. Synchronization transitions on complex thermo-sensitive neuron networks with time delays. Biophys Chem, 2010, 146: 126–132

    Article  CAS  Google Scholar 

  37. Gong YB, Xie YH, Lin X, Hao YH, Ma XG. Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks. Chaos Soliton Fract, 2010, 43: 96–103

    Article  Google Scholar 

  38. Hao YH, Gong YB, Wang L, Ma XG, Yang CL. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling. Chaos Soliton Fract, 2011, 44: 260–268

    Article  CAS  Google Scholar 

  39. Gong YB, Lin X, Wang L, Hao YH. Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks. Sci China Chem, 2011, 54: 1498–1503

    Article  CAS  Google Scholar 

  40. Haas JS, Nowotny T, Abarbanel HDI. Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol, 2006, 98: 3305–3313

    Article  Google Scholar 

  41. Achour SB, Pascual O. Glia: The many ways to modulate synaptic plasticity. Neurochem Int, 2010, 57: 440–445

    Article  Google Scholar 

  42. Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol, 2010, 20: 631–639

    Article  CAS  Google Scholar 

  43. Seliger P, Young SC, Tsimring LS. Plasticity and learning in a network of coupled phase oscillators. Phys Rev E, 2002, 65: 041906

    Article  Google Scholar 

  44. Huang D. Synchronization in adaptive weighted networks. Phys Rev E, 2006, 74: 046208

    Article  Google Scholar 

  45. Zhu JF, Zhao M, Yu W, Zhou CS, Wang BH. Better synchronizability in generalized adaptive networks. Phys Rev E, 2010, 81: 026201

    Article  Google Scholar 

  46. Wu D, Zhu SQ, Luo XQ, Wu L. Effect of adaptive coupling on stochastic resonance of small-world networks. Phys Rev E, 2011, 84: 021102

    Article  Google Scholar 

  47. Ma J, Jia Y, Wang C N, Li S R. The instability of the spiral wave induced by the deformation of elastic excitable media. J Phys A: Math Theor, 2008, 41: 385105

    Article  Google Scholar 

  48. Sheheitli H, Rand R. Origin of arrhythmias in a heart model. Commun Nonlinear Sci Numer Simulat 2009, 14: 3707–3414

    Article  Google Scholar 

  49. Wang C N, Yang L J, Yuan L H, Ma J. Deformation and death of spiral wave induced by asymmetrical diffusion in elastic media. Commun Nonlinear Sci Numer Simulat, 2010, 15: 3913–3918

    Article  Google Scholar 

  50. Newman MEJ, Watts DJ. Scaling and percolation in the small-world network model. Phys Rev E, 1999, 60: 7332–7342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Gong, Y., Xu, B. et al. Adaptive coupling-enhanced spiking synchronization in Newman-Watts neuronal networks with time delays. Sci. China Chem. 56, 648–655 (2013). https://doi.org/10.1007/s11426-013-4836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4836-6

Keywords

Navigation