Skip to main content
Log in

Neural Synchronization at Tonic-to-Bursting Transitions

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We studied the synchronous behavior of two electrically-coupled model neurons as a function of the coupling strength when the individual neurons are tuned to different activity patterns that ranged from tonic firing via chaotic activity to burst discharges. We observe asynchronous and various synchronous states such as out-of-phase, in-phase and almost in-phase chaotic synchronization. The highest variety of synchronous states occurs at the transition from tonic firing to chaos where the highest coupling strength is also needed for in-phase synchronization which is, essentially, facilitated towards the bursting range. This demonstrates that tuning of the neuron’s internal dynamics can have significant impact on the synchronous states especially at the physiologically relevant tonic-to-bursting transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 5, 349–374 (1993)

    Article  Google Scholar 

  2. McCormick, D.A., Feeser, H.R.: Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39, 103–113 (1990)

    Article  Google Scholar 

  3. Mormann, F., Kreuz, T., Andrzejak, R.G., David, P., Lehnertz, K., Elger, C.E.: Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 53(3), 173–185 (2003)

    Article  Google Scholar 

  4. Levy, R.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J. Neurosci. 20(20), 7766–7775 (2000)

    Google Scholar 

  5. Baufreton, J., Zhu, Z.T., Garret, M., Bioulac, B., Jonson, S.W., Taupingon, A.I.: Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J. 19, 1771–1777 (2005)

    Article  Google Scholar 

  6. Merello, M., Tenca, E., Cerquetti, D.: Neuronal activity of the zona incerta in Parkinson’s disease patients. Mov. Disord. 21(7), 937–943 (2006)

    Article  Google Scholar 

  7. Silva, L., Blanes, F., Kalitzin, W., Parra, S.N., Suffczynski, J., Velis, D.N.: Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44, 72–83 (2003)

    Article  Google Scholar 

  8. Braun, H.A., Bade, H., Hensel, H.: Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Eur. J. Physiol. 386, 1–9 (1980)

    Article  Google Scholar 

  9. Dutton, A., Dyball, R.E.J.: Phasic firing enhances vasopressin release from the rat neurohypophysis. J. Physiol. (Lond) 290, 433–440 (1979)

    Google Scholar 

  10. Atwater, I., Dawson, C.M., Scott, A., Eddlestone, G., Rojas, E.: The nature of the oscillatory behavior in electrical activity for the pancreatic beta cell. In: Malaisse, W.J., Taljedal, I.B. (eds.) Biochemistry and Biophysics of the Pancreatic Beta Cell, Hormone and Metabolic Research Supplement Series 10, pp. 100–107. Georg Thiem Verlag, Stuttgart (1980)

    Google Scholar 

  11. Dewald, M., Braun, H., Huber, M., Zwingmann, D., Roth, J., Voigt, K.: Interactions of temperature and angiotensin II in paraventricular neurons of rats in vitro. Eur. J. Physiol. 444, 117–125 (2002)

    Article  Google Scholar 

  12. Sherman, A., Rinzel, J.: Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophys. J. 59, 547–559 (1991)

    Article  ADS  Google Scholar 

  13. Chow, C.C., Kopell, N.: Dynamics of spiking neurons with electrical coupling. Neural Comput. 12, 1643–1678 (2000)

    Article  Google Scholar 

  14. Ermentrout, G.B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996)

    Google Scholar 

  15. Izhikevich, E.M.: Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Trans. Neural Netw. 10, 499–507 (1999)

    Article  Google Scholar 

  16. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)

    Google Scholar 

  17. Hansel, D., Mato, G., Meunier, C.: Synchrony in excitatory neural networks. Neural Comput. 7, 307–335 (1995)

    Article  Google Scholar 

  18. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization—A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  19. Postnov, D.E., Sosnovtseva, O.V., Malova, S.Y., Mosekilde, E.: Complex phase dynamics in coupled bursters. Phys. Rev. E 67, 016215–016225 (2003)

    Article  ADS  Google Scholar 

  20. Izhikevich, E.M.: Synchronization of elliptic bursters. SIAM Rev. 43(2), 315–344 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Belykh, V.N., Belykh, I.V., Colding-Jørgensen, M., Mosekilde, E.: Homoclinic bifurcations leading to bursting oscillations in cell models. Eur. Phys. J. 3, 205–219 (2000)

    Google Scholar 

  22. Hansel, D., Sompolinsky, H.: Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68(5), 718–721 (1992)

    Article  ADS  Google Scholar 

  23. Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 028101 (2004)

    Article  ADS  Google Scholar 

  24. Xia, S., Qi-Shao, L.: Firing patterns and complete synchronization of coupled Hindmarsh–Rose neurons. Chin. Phys. 14(1), 77–85 (2005)

    Article  ADS  Google Scholar 

  25. Bahar, S.: Burst-enhanced synchronization in an array of noisy coupled neurons. FNL 4(1), L87–L96 (2004)

    Article  Google Scholar 

  26. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922–041930 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wang, X.J.: Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D 62, 263–274 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101–041930 (2005)

    Article  ADS  Google Scholar 

  29. de Vries, G., Sherman, A.: From spikers to bursters via coupling: help from heterogeneity. Bull. Math. Biol. 63, 371–391 (2001)

    Article  Google Scholar 

  30. Braun, H.A., Voigt, K., Huber, M.T.: Oscillation, resonances and noise: basis of flexible neuronal pattern generation. Biosystems 71, 39–50 (2003)

    Article  Google Scholar 

  31. Rinzel, J.: A formal classification of bursting mechanisms in excitable systems. In: Gleason, A.M. (ed.) Proceedings of the International Congress of Mathematicians, pp. 135–169. AMS, Providence (1987)

    Google Scholar 

  32. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H.A., Huber, M.T.: Homoclinic bifurcations in a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 10, 231–239 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Postnova, S., Nekrasov, A., Sosnovtseva, O.: Noise induced effects in dynamics of coupled bursters. Proc. SPIE 5696, 183–192 (2005)

    Article  ADS  Google Scholar 

  34. Postnov, D., Han, S.K., Kook, H.: Synchronization of diffusively coupled oscillators near the homoclinic bifurcation. Phys. Rev. E 60(3), 2799–2807 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Postnova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postnova, S., Voigt, K. & Braun, H.A. Neural Synchronization at Tonic-to-Bursting Transitions. J Biol Phys 33, 129–143 (2007). https://doi.org/10.1007/s10867-007-9048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-007-9048-x

Keywords

Navigation