Skip to main content
Log in

Graphene oxide and molecular beacons-based multiplexed DNA detection by synchronous fluorescence analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We have developed a multiplexed DNA detection method based on graphene oxide (GO) and molecular beacons (MBs) by synchronous fluorescence analysis, demonstrated it by an oligonucleotide sequence of wild-type HBV (T1) and a reverse-transcription oligonucleotide sequence of the RNA fragment of HIV (T2) as a model system. In the absence of targets DNA, FAM-tagged free MB probes (PHBV) and ROX-tagged free MB probes (PHIV) are adsorbed on GO via π-π interactions between DNA nucleobases and nucleosides, and the π-rich GO brings the fluorophores of MB and GO into close proximity. And then, the fluorescence of fluorophores is quenched by GO. But in the presence of targets DNA, PHBV and PHIV hybridize with their targets DNA resulting in the formation of double-stranded DNA (dsDNA), causing the separation of PHBV and PHIV from the surface of GO and the recovery of the fluorescence of fluorophores (FAM and ROX) simultaneously. The simultaneous detection of T1 and T2 can be realized by measuring fluorescence signals of FAM and ROX, respectively. Under the optimum conditions, the fluorescence intensities of two dyes all exhibit good linear dependence on their target DNA concentration in the range of 5×10−11−5×10−9 M. The detection limit of T1 is 3×10−11 M (3 σ), and that of T2 is 2×10−11 M. Compared with other methods for DNA detection based on GO, the proposed method has some advantages including higher selectivity and shorter analytical time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casson N, Posfay-Barbe KM, Gervaix A, Greub G. New diagnostic real-time PCR for specific detection of Parachlamydia acanthamoebae DNA in clinical samples. J Clin Microbiol, 2008, 46(4): 1491–1493

    Article  CAS  Google Scholar 

  2. Schenk T, Brandstetter T, zur Hausen A, Alt-Morbe J, Huzly D, Ruhe J. Performance of a polymer-based dna chip platform in detection and genotyping of human papillomavirus in clinical samples. J Clin Microbiol, 2009, 47(5): 1428–1435

    Article  CAS  Google Scholar 

  3. Wallet F, Nseir S, Baumann L, Herwegh S, Sendid B, Boulo M, Roussel-Delvallez M, Durocher AV, Courcol RJ. Preliminary clinical study using a multiplex real-time PCR test for the detection of bacterial and fungal DNA directly in blood. Clin Microbiol Infect, 2010, 16(6): 774–779

    Article  CAS  Google Scholar 

  4. Lotan Y, Capitanio U, Shariat SF, Hutterer GC, Karakiewicz PI. Impact of clinical factors, including a point-of-care nuclear matrix protein-22 assay and cytology, on bladder cancer detection. Bju Int, 2009, 103(10): 1368–1374

    Article  CAS  Google Scholar 

  5. Kunduru V, Bothara M, Grosch J, Sengupta S, Patra PK, Prasad S. Nanostructured surfaces for enhanced protein detection toward clinical diagnostics. Nanomed Nanotechnol, 2010, 6(5): 642–650

    Article  CAS  Google Scholar 

  6. Ohishi Y, Nakamura M, Iio N, Higa S, Inayoshi M, Aiba Y, Komori A, Omagari K, Ishibashi H, Tsukamoto K. Single-nucleotide polymorphism analysis of the multidrug resistance protein 3 gene for the detection of clinical progression in Japanese patients with primary biliary cirrhosis. Hepatology, 2008, 48(3): 853–862

    Article  CAS  Google Scholar 

  7. Liu JB, Yang XH, He XX, Wang KM, Wang Q, Guo QP, Shi H, Huang J, Huo XQ. Fluorescent nanoparticles for chemical and biological sensing. Sci China Chem, 2011, 54(8): 1157–1176

    Article  Google Scholar 

  8. Zhou DM, Wu YD, Liu p, Bai HT, Tang LJ, Yu RQ, Jiang JH. Homogeneous label-free fluorescent assay of small molecule-protein interactions using protein binding-inhibited transcription nanomachine. Sci China Chem, 2011, 54(8): 1277–1283

    Article  CAS  Google Scholar 

  9. Song SP, Liang ZQ, Zhang J, Wang LH, Li GX, Fan CH. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed, 2009, 48(46): 8670–8674

    Article  CAS  Google Scholar 

  10. Stoeva SI, Lee JS, Thaxton CS, Mirkin CA. Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew Chem Int Ed, 2006, 45(20): 3303–3306

    Article  CAS  Google Scholar 

  11. Li JWJ, Chu YZ, Lee BYH, Xie XLS. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucl Acids Res, 2008, 36(6): e36

    Article  Google Scholar 

  12. Swearingen CB, Wernette DP, Cropek DM, Lu Y, Sweedler JV, Bohn PW. Immobilization of a catalytic DNA molecular beacon on au for Pb(II) detection. Anal Chem, 2005, 77(2): 442–448

    Article  CAS  Google Scholar 

  13. Wang J, Onoshima D, Aki M, Okamoto Y, Kaji N, Tokeshi M, Baba Y. Label-free detection of dna-binding proteins based on microfluidic solid-state molecular beacon sensor. Anal Chem, 2011, 83(9): 3528–3532

    Article  CAS  Google Scholar 

  14. Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol, 2001, 19(7): 680–681

    Article  CAS  Google Scholar 

  15. Maxwell DJ, Taylor JR, Nie SM. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc, 2002, 124(32): 9606–9612

    Article  CAS  Google Scholar 

  16. Yang CYJ, Lin H, Tan WH. Molecular assembly of superquenchers in signaling molecular interactions. J Am Chem Soc, 2005, 127(37): 12772–12773

    Article  CAS  Google Scholar 

  17. Brunner J, Kraemer R. Copper(II)-quenched oligonucleotide probes for fluorescent DNA sensing. J Am Chem Soc, 2004, 126(42): 13626–13627

    Article  CAS  Google Scholar 

  18. Zhang P, Beck T, Tan WH. Design of a molecular beacon DNA probe with two fluorophores. Angew Chem Int Ed, 2001, 40(2): 402–405

    Article  CAS  Google Scholar 

  19. Song SP, Liang ZQ, Zhang J, Wang LH, Li GX, Fan CH. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed, 2009, 48(46): 8670–8674

    Article  CAS  Google Scholar 

  20. Wu M, Kempaiah R, Huang PJJ, Maheshwari V, Liu JW. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir, 2011, 27(6): 2731–2738

    Article  CAS  Google Scholar 

  21. Huang PJJ, Liu JW. DNA-Length-dependent fluorescence signaling on graphene oxide surface. Small, 2012, 8(7): 977–983

    Article  CAS  Google Scholar 

  22. Wang X, Zhong SH, He Y, Song GW. A graphene oxide-rhodamine 6G nanocomposite as turn-on fluorescence probe for selective detection of DNA. Anal Method, 2012, 4(2): 360–362

    Article  CAS  Google Scholar 

  23. Li F, Feng Y, Zhao C, Li P, Tang B. A sensitive graphene oxide-DNA based sensing platform for fluorescence “turn-on” detection of bleomycin. Chem Commun, 2012, 48(1): 127–129

    Article  CAS  Google Scholar 

  24. Sun WL, Shi S, Yao TM. Graphene oxide-Ru complex for label-free assay of DNA sequence and potassium ions via fluorescence resonance energy transfer. Anal Method, 2011, 3(11): 2472–2474

    Article  CAS  Google Scholar 

  25. Liu XQ, Aizen R, Freeman R, Yehezkeli O, Willner I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: Application for logic gate operations. ACS Nano, 2012, 6(4): 3553–3563

    Article  CAS  Google Scholar 

  26. Mao S, Yu KH, Lu GH, Chen JH. Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res, 2011, 4(10): 921–930

    Article  Google Scholar 

  27. Mao S, Lu GH, Yu KH, Bo Z, Chen JH. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater, 2010, 22(32): 3521–3526

    Article  CAS  Google Scholar 

  28. Bao HQ, Pan YZ, Ping Y, Sahoo NG, Wu TF, Li L, Li J, Gan LH. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11): 1569–1578

    Article  CAS  Google Scholar 

  29. Wen HY, Dong CY, Dong HQ, Shen AJ, Xia WJ, Cai XJ, Song YY, Li XQ, Li YY, Shi DL. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small, 2012, 8(5): 760–769

    Article  CAS  Google Scholar 

  30. He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, Wang LH, Song SP, Fang HP, Fan CH. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater, 2010, 20(3): 453–459

    Article  CAS  Google Scholar 

  31. Teles FRR, Fonseca LR. Trends in DNA biosensors. Talanta, 2008, 77(2): 606–623

    Article  CAS  Google Scholar 

  32. Zhu NN, Cai H, He PG, Fang YZ. Tris (2,2′-bipyridyl)cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization. Anal Chim Acta, 2003, 481(2): 181–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiKe He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, D., Zheng, A., Luo, M. et al. Graphene oxide and molecular beacons-based multiplexed DNA detection by synchronous fluorescence analysis. Sci. China Chem. 56, 380–386 (2013). https://doi.org/10.1007/s11426-012-4767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4767-7

Keywords

Navigation