Skip to main content
Log in

Modeling of highly efficient drug delivery system induced by self-assembly of nanocarriers: A density functional study

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Owing to the importance of drug delivery in cancer or other diseases’ therapy, the targeted drug delivery (TDD) system has been attracting enormous interest. Herein, we model the TDD system and design a novel rod-like nanocarrier by using the coarse grained model-based density functional theory, which combines a modified fundamental measure theory for the excluded-volume effects, Wertheim’s first-order thermodynamics perturbation theory for the chain connectivity and the mean field approximation for van der Waals attraction. For comparison, the monomer nanocarrier TDD system and the no nanocarrier one are also investigated. The results indicate that the drug delivery capacity of rod-like nanocarriers is about 62 times that of the no nanocarrier one, and about 6 times that of the monomer nanocarriers. The reason is that the rod-like nanocarriers would self-assemble into the smectic phase perpendicular to the membrane surface. It is the self-assembly of the rod-like nanocarriers that yields the driving force for the targeted delivery of drugs inside the cell membrane. By contrast, the conventional monomer nanocarrier drug delivery system lacks the driving force to deliver the drugs into the cell membrane. In short, the novel rod-like nanocarrier TDD system may improve the drug delivery efficiency. Although the model in this work is simple, it is expected that the system may provide a new perspective for cancer targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloemen PGM, Henricks PAJ, Vanbloois L, Vandentweel MC, Bloem AC, Nijkamp FP, Crommelin DJA, Storm G. Adhesion molecules — a new target for immunoliposome-mediated drug-delivery. Febs Lett, 1995, 357: 140–144

    Article  CAS  Google Scholar 

  2. Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. Lactosylated poly(ethylene glycol)-sirna conjugate through acid-labile ss-thiopropionate linkage to construct ph-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc, 2005, 127: 1624–1625

    Article  CAS  Google Scholar 

  3. Apostolovic B, Deacon SPE, Duncan R, Klok HA. Cell uptake and trafficking behavior of non-covalent, coiled-coil based polymer-drug conjugates. Macromol Rapid Commun, 2011, 32: 11–18

    Article  CAS  Google Scholar 

  4. Bodor N. Retrometabolic drug design concepts in ophthalmic target-specific drug-delivery. Adv Drug Deliver Rev, 1995, 16: 21–38

    Article  CAS  Google Scholar 

  5. Chao X, Guo LL, Zhao YY, Hua K, Peng ML, Chen C, Cui YL. Peg-modified goldmag nanoparticles (pgmns) combined with the magnetic field for local drug delivery. J Drug Target, 2011, 19: 161–170

    Article  CAS  Google Scholar 

  6. Ehrhardt C, Kneuer C, Bakowsky U. Selectins — an emerging target for drug delivery. Adv Drug Deliver Rev, 2004, 56: 527–549

    Article  CAS  Google Scholar 

  7. Wang NX, von Recum HA. Affinity-based drug delivery. Macromol Biosci, 2011, 11: 321–332

    Article  CAS  Google Scholar 

  8. Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells. Eur J Pharmacol, 2009, 625: 174–180

    Article  CAS  Google Scholar 

  9. Lammel A, Schwab M, Hofer M, Winter G, Scheibel T. Recombinant spider silk particles as drug delivery vehicles. Biomater, 2011, 32: 2233–2240

    Article  CAS  Google Scholar 

  10. Luo SH, Kansara VS, Zhu XD, Mandava NK, Pal D, Mitra AK. Functional characterization of sodium-dependent multivitamin transporter in mdck-mdr1 cells and its utilization as a target for drug delivery. Mol Pharmaceut, 2006, 3: 329–339

    Article  CAS  Google Scholar 

  11. Sugahara T, Kawashima S, Oda A, Hisaeda Y, Kato K. Preparation of cationic immunovesicles containing cationic peptide lipid for specific drug delivery to target cells. Cytotechnology, 2005, 47: 51–57

    Article  CAS  Google Scholar 

  12. Viglianti BL. Target molecular therapies: Methods to enhance and monitor tumor drug delivery. Abdom Imaging, 2009, 34: 686–695

    Article  Google Scholar 

  13. D’Acunto M. Nanovectors for drug delivery: Long-lived pore dynamics for swelling liposomes. Mech Res Commun, 2011, 38: 34–37

    Article  Google Scholar 

  14. Ngweniform P, Abbineni G, Cao BR, Mao CB. Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing m13 phage: A novel nanocarrier for targeted drug delivery. Small, 2009, 5: 1963–1969

    Article  CAS  Google Scholar 

  15. Fuchigami T, Kawamura R, Kitamoto Y, Nakagawa M, Namiki Y. Ferromagnetic fept-nanoparticles/polycation hybrid capsules designed for a magnetically guided drug delivery system. Langmuir, 2011, 27: 2923–2928

    Article  CAS  Google Scholar 

  16. Kullberg M, Mann K, Owens JL. Improved drug delivery to cancer cells: A method using magnetoliposomes that target epidermal growth factor receptors. Med Hypotheses, 2005, 64: 468–470

    Article  CAS  Google Scholar 

  17. Alarcon CDH, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev, 2005, 34: 276–285

    Article  CAS  Google Scholar 

  18. Grund S, Bauer M, Fischer D. Polymers in drug delivery-state of the art and future trends. Adv Eng Mater, 2011, 13: B61–B87

    Article  Google Scholar 

  19. Honarbakhsh S, Pourdeyhimi B. Scaffolds for drug delivery, part i: Electrospun porous poly(lactic acid) and poly(lactic acid)/poly(ethylene oxide) hybrid scaffolds. J Mater Sci, 2011, 2874-2881

  20. Wu H, Zhang G, Guo BS, Tao T, Li G, Lee KM, Hung LK, Qin L. A novel peptide for a drug delivery system to preferentially target bone formation sites. Bone, 2010, 47:S413–S414

    Article  Google Scholar 

  21. Zoonens M, Reshetnyak YK, Engelman DM. Bilayer interactions of phlip, a peptide that can deliver drugs and target tumors. Biophys J, 2008, 95: 225–235

    Article  CAS  Google Scholar 

  22. Hollins AJ, Omidi Y, Benter IF, Akhtar S. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance sirna activity. J Drug Target, 2007, 15: 83–88

    Article  CAS  Google Scholar 

  23. Howard KA. Delivery of rna interference therapeutics using polycation-based nanoparticles. Adv Drug Deliver Rev, 2009, 61: 710–720

    Article  CAS  Google Scholar 

  24. Kim WJ, Kim SW. Efficient sirna delivery with non-viral polymeric vehicles. Pharmac Res, 2009, 26: 657–666

    Article  CAS  Google Scholar 

  25. Jiménez-Ángeles F, Lozada-Cassou M. Simple model for semipermeable membrane: Donnan equilibrium. J Phys Chem B, 2004, 108(5): 1719–1730

    Article  Google Scholar 

  26. Bryk P, Cyrankiewicz W, Borowko M, Sokolowski S. A fluid in contact with a semipermeable membrane: Density functional approach. Mol Phys, 1998, 93: 111–115

    Article  CAS  Google Scholar 

  27. Bryk P, Patrykiejew A, Reszko-Zygmunt J, Sokolowski S. Phase behaviour of a lennard-jones fluid in a pore with permeable walls of a finite thickness: A density functional approach. Mol Phys, 1999, 96: 1509–1516

    Article  CAS  Google Scholar 

  28. Borowko M, Patrykiejew A, Rzysko W, Sokołowski S, Ilnytskyi J. Complex phase behavior of a fluid in slits with semipermeable walls modified with tethered chains. J Chem Phys, 2011, 134: 044705

    Article  CAS  Google Scholar 

  29. Xu X, Cao DP. Density functional theory for adsorption of colloids on the polymer-tethered surfaces: Effect of polymer chain architecture. J Chem Phys, 2009, 130: 164901

    Article  Google Scholar 

  30. Milik M, Kolinski A, Skolnick J. Monte carlo dynamics of a dense system of chain molecules constrained to lie near an interface. A simplified membrane model. J Chem Phys, 1990, 93: 4440–4446

    Article  CAS  Google Scholar 

  31. Ben-Shaul A, Szleifer I, Gelbart WM. Chain organization and thermodynamics in micelles and bilayers. I. Theory. J Chem Phys, 1985, 83: 3597–3611

    Article  CAS  Google Scholar 

  32. Szleifer I, Ben-Shaul A, Gelbart WM. Chain statistics in micelles and bilayers: Effects of surface roughness and internal energy. J Chem Phys, 1986, 85: 5345–5358

    Article  CAS  Google Scholar 

  33. Szleifer I, Ben-Shaul A, Gelbart WM. Statistical thermodynamics of molecular organization in mixed micelles and bilayers. J Chem Phys, 1987, 86: 7094–7109

    Article  CAS  Google Scholar 

  34. van der Ploeg P, Berendsen HJC. Molecular dynamics simulation of a bilayer membrane. J Chem Phys, 1982, 76: 3271–3276

    Article  Google Scholar 

  35. Frink LJD, Frischknecht AL. Density functional theory approach for coarse-grained lipid bilayers. Phys Rev E, 2005, 72: 041923

    Article  Google Scholar 

  36. Zheng N, Geehan J, Whitmore MD. Self-consistent field theory of two-component phospholipid membranes. Phys Rev E, 2007, 75(5): 051922

    Article  Google Scholar 

  37. Ba H, Rodríguez-Fernández J, Stefani FD, Feldmann J. Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding. Nano Lett, 2010, 10: 3006–3012

    Article  CAS  Google Scholar 

  38. Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nano, 2010, 5: 579–583

    Article  CAS  Google Scholar 

  39. Cao DP, Wu JZ. Theoretical study of cooperativity in multivalent polymers for colloidal stabilization. Langmuir, 2005, 21: 9786–9791

    Article  CAS  Google Scholar 

  40. Cao DP, Wu JZ. Microstructure of block copolymers near selective surfaces: Theoretical predictions and configurational-bias monte carlo simulation. Macromolecules, 2005, 38: 971–978

    Article  CAS  Google Scholar 

  41. Cao DP, Wu JZ. Density functional theory for a primitive model of nanoparticle-block copolymer mixtures. J Chem Phys, 2007, 126: 144912

    Article  Google Scholar 

  42. Yu YX, Wu JZ. Structures of hard-sphere fluids from a modified fundamental-measure theory. J Chem Phys, 2002, 117: 10156–10164

    Article  CAS  Google Scholar 

  43. Cao DP, Jiang T, Wu JZ. A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-chain simulation with density functional theory. J Chem Phys, 2006, 124: 164904

    Article  Google Scholar 

  44. Jiang J, Xu X, Huang J, Cao DP. Density functional theory for rod-coil polymers with different size segments. J Chem Phys, 2011, 135: 054903

    Article  Google Scholar 

  45. Rosenfeld Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys Rev Lett, 1989, 63: 980–983

    Article  CAS  Google Scholar 

  46. Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. PNAS, 2010, 107: 1235–1240

    Article  CAS  Google Scholar 

  47. Cheng LS, Cao DP. Understanding self-assembly of rod-coil copolymer in nanoslits. J Chem Phys, 2008, 128: 074902

    Article  Google Scholar 

  48. Cao D, Zhu M, Wang W. Microstructure and self-assembly of inhomogeneous rigid rodlike chains between two neutral surfaces: A hybrid density functional approach. J Phys Chem B, 2006, 110: 21882–21889

    Article  CAS  Google Scholar 

  49. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov, 2003, 2: 347–360

    Article  CAS  Google Scholar 

  50. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer, 2006, 6: 688–701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaPeng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Cao, D. Modeling of highly efficient drug delivery system induced by self-assembly of nanocarriers: A density functional study. Sci. China Chem. 56, 249–255 (2013). https://doi.org/10.1007/s11426-012-4752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4752-1

Keywords

Navigation