Skip to main content
Log in

Self-assembly of conjugated polymers for anisotropic nanostructures

  • Reviews
  • Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our recent results on the self-assembly of one-, two- and three-dimensional anisotropic nanostructures using conjugated polymers as building blocks, including the formation of one-dimensional (1D) nanofibers and nanotubes, two-dimensional (2D) nanoribbons and nanosheets, and three-dimensional (3D) superstructures. The mechanisms guiding the formation of various nanostructures are analyzed by a cooperative effect of π-π stacking interaction and other noncovalent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osterbacka R, Juska G, Arlauskas K, Pal AJ, Kalman KM, Stubb H. Electric field redistribution and electroluminescence response time in polymeric light-emitting diodes. J Appl Phys, 1998, 84(6): 3359–3363

    Article  CAS  Google Scholar 

  2. Pei J, Yu WL, Huang W, Heeger AJ. A novel series of efficient thiophene-based light-emitting conjugated polymers and application in polymer light-emitting diodes. Macromolecules, 2000, 33(7): 2462–2471

    Article  CAS  Google Scholar 

  3. Maggini L, Bonifazi D. Hierarchised luminescent organic architectures: Design, synthesis, self-assembly, self-organisation and functions. Chem Soc Rev, 2012, 41(1): 211–241

    Article  CAS  Google Scholar 

  4. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salaneck WR. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715): 121–128

    Article  CAS  Google Scholar 

  5. Hosono E, Fujihara S, Honna I, Zhou HS. The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv Mater, 2005, 17(17): 2091–2094

    Article  CAS  Google Scholar 

  6. Li G, Shrotriya V, Yao Y, Huang JS, Yang Y. Manipulating regioregular poly(3-hexylthiophene): 6,6-Phenyl-C-61-butyric acid methyl ester blends — route towards high efficiency polymer solar cells. J Mater Chem, 2007, 17(30): 3126–3140

    Article  CAS  Google Scholar 

  7. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon, 2009, 3(5): 297–U5

    Article  CAS  Google Scholar 

  8. Bredas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104(11): 4971–5003

    Article  CAS  Google Scholar 

  9. McCullough RD. The chemistry of conducting polythiophenes. Adv Mater, 1998, 10(2): 93–116

    Article  CAS  Google Scholar 

  10. McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev, 2000, 100(7): 2537–2574

    Article  CAS  Google Scholar 

  11. Yang F, Shtein M, Forrest SR. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Mater, 2005, 4(1): 37–41

    Article  Google Scholar 

  12. Hoppe H, Sariciftci NS. Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem, 2006, 16(1): 45–61

    Article  CAS  Google Scholar 

  13. Yang XN, Loos JC. Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules, 2007, 40(5): 1353–1362

    Article  CAS  Google Scholar 

  14. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401(6754): 685–688

    Article  CAS  Google Scholar 

  15. Cornil J, Beljonne D, Calbert JP, Bredas JL. Interchain interactions in organic pi-conjugated materials: Impact on electronic structure, optical response, and charge transport. Adv Mater, 2001, 13(14): 1053–1067

    Article  CAS  Google Scholar 

  16. Zhang R, Li B, Iovu MC, Jeffries-El M, Sauve G, Cooper J, Jia SJ, Tristram-Nagle S, Smilgies DM, Lambeth DN, McCullough RD, Kowalewski T. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J Am Chem Soc, 2006, 128(11): 3480–3481

    Article  CAS  Google Scholar 

  17. Xia L, Wei ZX, Wan MX. Conducting polymer nanostructures and their application in biosensors. J Colloid Interf Sci, 2010, 341(1): 1–11

    Article  CAS  Google Scholar 

  18. Hangarter CM, Bangar M, Mulchandani A, Myung NV. Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem, 2010, 20(16): 3131–3140

    Article  CAS  Google Scholar 

  19. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418–2421

    Article  CAS  Google Scholar 

  20. Wu Y, Xiang J, Yang C, Lu W, Lieber CM. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430(6995): 61–65

    Article  CAS  Google Scholar 

  21. Wang JF, Gudiksen MS, Duan XF, Cui Y, Lieber CM. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455–1457

    Article  CAS  Google Scholar 

  22. Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424(6949): 654–657

    Article  CAS  Google Scholar 

  23. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater, 2001, 11(5): 387–392

    Article  CAS  Google Scholar 

  24. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett, 1997, 70(11): 1480–1482

    Article  CAS  Google Scholar 

  25. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes?-?The route toward applications. Science, 2002, 297(5582): 787–792

    Article  CAS  Google Scholar 

  26. Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287(5459): 1801–1804

    Article  CAS  Google Scholar 

  27. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622–625

    Article  CAS  Google Scholar 

  28. Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401): 512–514

    Article  CAS  Google Scholar 

  29. Deheer WA, Chatelain A, Ugarte D. A carbon nanotube field-mission electron source. Science, 1995, 270(5239): 1179–1180

    Article  CAS  Google Scholar 

  30. Sandberg HGO, Frey GL, Shkunov MN, Sirringhaus H, Friend RH, Nielsen MM, Kumpf C. Ultrathin regioregular poly(3-hexyl thiophene) field-effect transistors. Langmuir, 2002, 18(26): 10176–10182

    Article  CAS  Google Scholar 

  31. Chang JF, Sun BQ, Breiby DW, Nielsen MM, Solling TI, Giles M, McCulloch I, Sirringhaus H. Enhanced mobility of poly(3-exylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater, 2004, 16(23): 4772–4776

    Article  CAS  Google Scholar 

  32. Dong H, Wang C, Hu W. High performance organic semiconductors for field-effect transistors. Chem Commun, 2010, 5211–5222

  33. Ihn KJ, Moulton J, Smith P. Whiskers of poly(3-alkylthiophene)s. J Polym Sci Pol Phys, 1993, 31(6): 735–742

    Article  CAS  Google Scholar 

  34. Berson S, De Bettignies R, Bailly S, Guillerez S. Poly-(3-hexylthiophene) fibers for photovoltaic applications. Adv Funct Mater, 2007, 17(8): 1377–1384

    Article  CAS  Google Scholar 

  35. Samitsu S, Shimomura T, Ito K. Nanofiber preparation by whisker method using solvent-soluble conducting polymers. Thin Solid Films, 2008, 516(9): 2478–2486

    Article  CAS  Google Scholar 

  36. Samitsu S, Shimomura T, Heike S, Hashizume T, Ito K. Effective production of poly(3-alkylthiophene) nanofibers by means of whisker method using anisole solvent: Structural, optical, and electrical properties. Macromolecules, 2008, 41(21): 8000–8010

    Article  CAS  Google Scholar 

  37. Kim DH, Park YD, Jang Y, Kim S, Cho K. Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films. Macromol Rapid Comm, 2005, 26(10): 834–839

    Article  CAS  Google Scholar 

  38. Kim DH, Han JT, Park YD, Jang Y, Cho JH, Hwang M, Cho K. Single-crystal polythiophene microwires grown by self-assembly. Adv Mater, 2006, 18(6): 719–723

    Article  CAS  Google Scholar 

  39. Roehling JD, Arslan I, Moule AJ. Controlling microstructure in poly(3-hexylthiophene) nanofibers. J Mater Chem, 2012, 22(6): 2498–2506

    Article  CAS  Google Scholar 

  40. Oosterbaan WD, Vrindts V, Berson S, Guillerez S, Douheret O, Ruttens B, D’Haen J, Adriaensens P, Manca J, Lutsen L, Vanderzande D. Efficient formation, isolation and characterization of poly(3-alkylthiophene) nanofibres: Probing order as a function of side-chain length. J Mater Chem, 2009, 19(30): 5424–5435

    Article  CAS  Google Scholar 

  41. Causin V, Marega C, Marigo A, Valentini L, Kenny JM. Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene). Macromol-ules, 2005, 38(2): 409–415

    Article  CAS  Google Scholar 

  42. Kline RJ, McGehee MD, Kadnikova EN, Liu JS, Frechet JMJ. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater, 2003, 15(18): 1519–1522

    Article  CAS  Google Scholar 

  43. Yan Y, Zhang YJ, Hu WP, Wei ZX. Hierarchical crystalline superstructures of conducting polymers with homohelicity. Chem-eur J, 2010, 16(29): 8626–8630

    Article  CAS  Google Scholar 

  44. Samori P, Francke V, Mullen K, Rabe JP. Self-assembly of a conjugated polymer: From molecular rods to a nanoribbon architecture with molecular dimensions. Chem-eur J, 1999, 5(8): 2312–2317

    Article  CAS  Google Scholar 

  45. Traiphol R, Perahia D. Growth of nanoscale aggregates of dialkyl-poly(p-phenyleneethynylene)s on mica: Roles of molecular architectures and interchain association in solution. Thin Solid Films, 2006, 515(4): 2123–2129

    Article  CAS  Google Scholar 

  46. Xiao XL, Wang ZB, Hu ZJ, He TAB. Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation. J Phys Chem B, 2010, 114(22): 7452–7460

    Article  CAS  Google Scholar 

  47. Xiao XL, Hu ZJ, Wang ZB, He TB. Study on the single crystals of poly(3-octylthiophene) induced by solvent-vapor annealing. J Phys Chem B, 2009, 113(44): 14604–14610

    Article  CAS  Google Scholar 

  48. Dong H, Jiang S, Jiang L, Liu Y, Li H, Hu W, Wang E, Yan S, Wei Z, Xu W, Gong X. Nanowire crystals of a rigid rod conjugated polymer. J Am Chem Soc, 2009, 131(47): 17315–17320

    Article  CAS  Google Scholar 

  49. Onodera T, Oshikiri T, Katagi H, Kasai H, Okada S, Oikawa H, Terauchi M, Tanaka M, Nakanishi H. Nano-wire crystals of pi-conjugated organic materials. J Cryst Growth, 2001, 229(1): 586–590

    Article  CAS  Google Scholar 

  50. Zhang LJ, Long YZ, Chen ZJ, Wan MX. The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv Funct Mater, 2004, 14(7): 693–698

    Article  CAS  Google Scholar 

  51. Du X-S, Zhou C-F, Mai Y-W. Novel synthesis of poly(3,4-thylenedioxythiophene) nanotubes and hollow micro-spheres. Mater Lett, 2009, 63(18-19): 1590–1593

    Article  CAS  Google Scholar 

  52. Parthasarathy RV, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature, 1994, 369(6478): 298–301

    Article  CAS  Google Scholar 

  53. Zhang ZM, Wei ZX, Wan MX. Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 2002, 35(15): 5937–5942

    Article  CAS  Google Scholar 

  54. Zhang XT, Zhang J, Song WH, Liu ZF. Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B, 2006, 110(3): 1158–1165

    Article  CAS  Google Scholar 

  55. Zhang XT, Zhang J, Liu ZF, Robinson C. Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem Commun, 2004, (16): 1852–1853

  56. Wei ZX, Zhang ZM, Wan MX. Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir, 2002, 18(3): 917–921

    Article  CAS  Google Scholar 

  57. Chiou NR, Epstein AJ. Polyaniline nanofibers prepared by dilute polymerization. Adv Mater, 2005, 17(13): 1679–1683

    Article  CAS  Google Scholar 

  58. Chiou NR, Lui CM, Guan JJ, Lee LJ, Epstein AJ. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat Nanotech, 2007, 2(6): 354–357

    Article  CAS  Google Scholar 

  59. Huang JX, Kaner RB. Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew Chem Int Edit, 2004, 43(43): 5817–5821

    Article  CAS  Google Scholar 

  60. Huang JX, Kaner RB. The intrinsic nanofibrillar morphology of polyaniline. Chem Commun, 2006 (4): 367–376

  61. Huang JX, Kaner RB. A general chemical route to polyaniline nanofibers. J Am Chem Soc, 2004, 126(3): 851–855

    Article  CAS  Google Scholar 

  62. Zhang XY, Chan-Yu-King R, Jose A, Manohar SK. Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Met, 2004, 145(1): 23–29

    Article  CAS  Google Scholar 

  63. Lei YL, Liao Q, Fu HB, Yao JN. Phase- and shape-controlled synthesis of single crystalline perylene nanosheets and its optical properties. J Phys Chem C, 2009, 113(23): 10038–10043

    Article  CAS  Google Scholar 

  64. Tang ZY, Zhang ZL, Wang Y, Glotzer SC, Kotov NA. Self-assembly of CdTe nanocrystals into free-floating sheets. Science, 2006, 314(5797): 274–278

    Article  CAS  Google Scholar 

  65. Geim KSN. The rise of graphene. Nat Nanotech, 2010, 5(11): 755–755

    Article  Google Scholar 

  66. Li XL, Wang XR, Zhang L, Lee SW, Dai HJ. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229–1232

    Article  CAS  Google Scholar 

  67. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  CAS  Google Scholar 

  68. Dyreklev P, Gustafsson G, Inganas O, Stubb H. Polymeric field-effect transistors using oriented polymers. Synthetic Met, 1993, 57(1): 4093–4098

    Article  CAS  Google Scholar 

  69. Kotarba S, Jung J, Kowalska A, Marszalek T, Kozanecki M, Miskiewicz P, Mas-Torrent M, Rovira C, Veciana J, Puigmarti-Luis J, Ulanski J. Anisotropy in structural and physical properties in tetrathiafulvalene derivatives-based zone-cast layers as seen by Raman spectroscopy, UV-visible spectroscopy, and field effect measurements. J Appl Phys, 2010, 108(1): 014504

    Article  Google Scholar 

  70. Kinder L, Kanicki J, Petroff P. Structural ordering and enhanced carrier mobility in organic polymer thin film transistors. Synthetic Met, 2004, 146(2): 181–185

    Article  CAS  Google Scholar 

  71. Yan Y, Fang J, Zhang YJ, Fan HL, Wei ZX. Self-assembled single-crystal polyaniline microplates and their anisotropic electrical transport property. Macromol Rapid Comm, 2011, 32(20): 1640–1644

    Article  CAS  Google Scholar 

  72. Yu Z, Yan H, Lu K, Zhang YJ, Wei ZX. Self-assembly of two-imensional nanostructures of linear regioregular poly(3-exylthiophene). Rsc Advances, 2012, 2(1): 338–343

    Article  CAS  Google Scholar 

  73. Briseno AL, Mannsfeld SCB, Shamberger PJ, Ohuchi FS, Bao ZN, Jenekhe SA, Xia YN. Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts. Chem Mater, 2008, 20(14): 4712–4719

    Article  CAS  Google Scholar 

  74. Liu JH, Arif M, Zou JH, Khondaker SI, Zhai L. Controlling poly(3-hexylthiophene) crystal dimension: nanowhiskers and nanoribbons. Macromolecules, 2009, 42(24): 9390–9393

    Article  CAS  Google Scholar 

  75. Arif M, Liu J, Zhai L, Khondaker SI. Poly(3-hexylthiophene) crystalline nanoribbon network for organic field effect transistors. Appl Phys Lett, 2010, 96(24)

  76. Jeon SS, Yoon CS, Im SS. Shape-controlled fabrication of polypyrrole microstructures by replicating organic crystals through electrostatic interactions. Polymer, 2010, 51(23): 5400–5406

    CAS  Google Scholar 

  77. Feng J, Yan W, Zhu J. Synthesis of novel hexagonal micro-sheet polypyrrole and micro-sheet polypyrrole with grooves in the presence of alpha-cyclodextrin/Acid Red G inclusion compounds. Synthetic Met, 2010, 160(9–10): 939–945

    Article  CAS  Google Scholar 

  78. Zhou CQ, Han J, Song GP, Guo R. Polyaniline hierarchical structures synthesized in aqueous solution: Micromats of nanofibers. Macromolecules, 2007, 40(20): 7075–7078

    Article  CAS  Google Scholar 

  79. Yu XL, Fan HS, Wang H, Zhao N, Zhang XL, Xu J. Self-assembly hierarchical micro/nanostructures of leaf-like polyaniline with 1D nanorods on 2D foliage surface. Mater Lett, 2011, 65(17–18): 2724–2727

    Article  CAS  Google Scholar 

  80. Xiong SX, Liu J, Lu XH. Preparation of highly crystalline poly(2,5-dimethoxyaniline) nanoplates using a soft-template method and their structural characterization. Aust J Chem, 2011, 64(9): 1194–1200

    Article  CAS  Google Scholar 

  81. Jeon SS, An HH, Yoon CS, Im SS. Synthesis of ultra-thin polypyrrole nanosheets for chemical sensor applications. Polymer, 2011, 52(3): 652–657

    Article  CAS  Google Scholar 

  82. Wang TQ, Zhong WB, Ning XT, Wang YX, Yang WT. Facile route to hierarchical conducting polymer nanostructure: Synthesis of layered polypyrrole network plates. J Appl Polym Sci, 2009, 114(6): 3855–3862

    Article  CAS  Google Scholar 

  83. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 2005, 15(10): 1617–1622

    Article  CAS  Google Scholar 

  84. Ekanayake EMIM, Preethichandra DMG, Kaneto K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens Bioelectron, 2007, 23(1): 107–113

    Article  CAS  Google Scholar 

  85. Chang HX, Yuan Y, Shi NL, Guan YF. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal Chem, 2007, 79(13): 5111–5115

    Article  CAS  Google Scholar 

  86. Il Cho S, Lee SB. Fast electrochemistry of conductive polymer nanotubes: Synthesis, mechanism, and application. Acc Chem Res, 2008, 41(6): 699–707

    Article  Google Scholar 

  87. Kannan P, John SA, Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology, 2008, 19(8): 085602

    Article  Google Scholar 

  88. Yan Y, Wang R, Qiu XH, Wei ZX. Hexagonal superlattice of chiral conducting polymers self-assembled by mimicking beta-sheet proteins with anisotropic electrical transport. J Am Chem Soc, 2010, 132(34): 12006–12012

    Article  CAS  Google Scholar 

  89. Yan H, Yan Y, Yu Z, Wei ZX. Self-assembling branched and hyperbranched nanostructures of poly(3-hexylthiophene) by a solution process. J Phys Chem C, 2011, 115(8): 3257–3262

    Article  CAS  Google Scholar 

  90. Zhu Y, Hu D, Wan MX, Jiang L, Wei Y. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv Mater, 2007, 19(16): 2092–2096

    Article  CAS  Google Scholar 

  91. Zhu Y, Li JM, Wan MX, Jiang L. Superhydrophobic 3D microstructures assembled from 1D nanofibers of polyaniline. Macromol Rapid Comm, 2008, 29(3): 239–243

    Article  CAS  Google Scholar 

  92. Zhu Y, Li JM, Wan MX, Jiang L. 3D-boxlike polyaniline microstructures with super-hydrophobic and high-crystalline properties. Polymer, 2008, 49(16): 3419–3423

    Article  CAS  Google Scholar 

  93. Zhu Y, Liu MJ, Wan MX, Jiang L. 3D-micro/nanostructures of conducting polymers assembled from 1D-nanostructures and their controlling wettability. Prog Chem, 2011, 23(5): 819–828

    CAS  Google Scholar 

  94. Zhou CQ, Han J, Guo R. Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 2008, 41(17): 6473–6479

    Article  CAS  Google Scholar 

  95. Zhou CQ, Han J, Song GP, Guo R. Fabrication of polyaniline with hierarchical structures in alkaline solution. Eur Polym J, 2008, 44(9): 2850–2858

    Article  CAS  Google Scholar 

  96. Prathap MUA, Srivastava R. Morphological controlled synthesis of micro-/nano-polyaniline. J Polym Res, 2011, 18(6): 2455–2467

    Article  CAS  Google Scholar 

  97. Zhu Y, He HY, Wan MX, Jiang L. Rose-like microstructures of polyaniline by using a simplified template-free method under a high relative humidity. Macromol Rapid Comm, 2008, 29(21): 1705–1710

    Article  CAS  Google Scholar 

  98. Xia YY, Yang JG. One-step fabrication of hierarchical polypyrrole microspheres with nanofibers as building blocks. Synth Met, 2010, 160(15–16)

    Google Scholar 

  99. Huang J, Wang K, Wei Z. Conducting polymer nanowire arrays with enhanced electrochemical performance. J Mater Chem, 2010, 20(6): 1117–1121

    Article  CAS  Google Scholar 

  100. Xia L, Quan BG, Wei ZX. Patterned growth of vertically aligned polypyrrole nanowire arrays. Macromol Rapid Comm, 2011, 32(24): 1998–2002

    Article  CAS  Google Scholar 

  101. Wang K, Huang JY, Wei ZX. Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C, 2010, 114(17): 8062–8067

    Article  CAS  Google Scholar 

  102. Li M, Wei ZX, Jiang L. Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J Mater Chem, 2008, 18(19): 2276–2280

    Article  CAS  Google Scholar 

  103. Wang K, Zhao P, Zhou XM, Wu HP, Wei ZX. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem, 2011, 21(41): 16373–16378

    Article  CAS  Google Scholar 

  104. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. Acs Nano, 2010, 4(9): 5019–5026

    Article  CAS  Google Scholar 

  105. Zou WJ, Quan BG, Wang K, Xia L, Yao JL, Wei ZX. Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing. Small, 2011, 7(23): 3287–3291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiXiang Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Lu, K. & Wei, Z. Self-assembly of conjugated polymers for anisotropic nanostructures. Sci. China Chem. 55, 2283–2291 (2012). https://doi.org/10.1007/s11426-012-4734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4734-3

Keywords

Navigation