Skip to main content
Log in

Enhanced growth of crystalline-amorphous core-shell silicon nanowires by catalytic thermal CVD using in situ generated tin catalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, we prepared silicon nanowires (Si NWs) on both fluorine-doped SnO2 (FTO) coated glass substrate and common glass substrate by catalytic thermal chemical vapor deposition (CVD) using indium film as the catalyst. It is confirmed that indium can catalyze the growth of Si NWs. More importantly, we found that tin generated in situ from the reduction of SnO2 by indium can act as catalyst, which greatly enhances the growth of Si NWs on FTO substrate. The obtained Si NWs have a uniform crystalline-amorphous core-shell structure that is formed via vapor-liquid-solid and vapor-solid growth of silicon sequentially. This work provides a strategy to prepare Si NWs in high yield by catalytic thermal CVD using the low melting point metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner RS, Ellis WC. Vapour-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4: 89–90

    Article  CAS  Google Scholar 

  2. Cui Y, Zhong ZH, Wang DL, Wang WU, Lieber CM. High performance silicon nanowire field effect transistors. Nano Lett, 2003, 3: 149–152

    Article  CAS  Google Scholar 

  3. Heinzig A, Slesazeck S, Kreupl F, Mikolajick T, Weber WM. Reconfigurable silicon nanowire transistors. Nano Lett, 2012, 12: 119–124

    Article  CAS  Google Scholar 

  4. Kamins TI, Sharma S, Yasseri AA, Li Z, Straznicky J. Metal-catalysed, bridging nanowires as vapour sensors and concept for their use in a sensor system. Nanotechnology, 2006, 17: S291–S297

    Article  CAS  Google Scholar 

  5. Tian BZ, Zheng XL, Kempa TJ, Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449: 885–890

    Article  CAS  Google Scholar 

  6. Hochbaum AI, Yang PD. Semiconductor nanowires for energy conversion. Chem Rev, 2010, 110: 527–546

    Article  CAS  Google Scholar 

  7. Cui LF, Ruffo R, Chan CK, Peng HL, Cui Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett, 2009, 9: 491–495

    Article  CAS  Google Scholar 

  8. Yoo H, Lee JI, Kim H, Lee JP, Cho J, Park S. Helical silicon/silicon oxide core-shell anodes grown onto the surface of bulk silicon. Nano Lett, 2011, 11: 4324–4328

    Article  CAS  Google Scholar 

  9. Givargizov EI. Fundamental aspects of VLS growth. J Cryst Growth, 1975, 31: 20–30

    Article  CAS  Google Scholar 

  10. Law M, Goldberger J, Yang PD. Semiconductor nanowires and nanotubes. Annu Rev Mater Res, 2004, 34: 83–122

    Article  CAS  Google Scholar 

  11. Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J Vac Sci Technol B, 1997, 15: 554–557

    Article  CAS  Google Scholar 

  12. Ozaki N, Ohno Y, Takeda S. Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface. Appl Phys Lett, 1998, 73: 3700–3702

    Article  CAS  Google Scholar 

  13. Lauhon LJ, Gudiksen MS, Wang D, Lieber CM. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57–61

    Article  CAS  Google Scholar 

  14. Woo YS, Kang K, Jo M, Jeon J, Kim M. Solid-phase epitaxy of amorphous Si using single-crystalline Si nanowire seed templates. Appl Phys Lett, 2007, 91: 223107

    Article  Google Scholar 

  15. Binary Alloy Phase Diagrams. Version 1.0, 2nd ed. plus updates on CD-ROM, Materials Park. Ohio: ASM International. 1996

  16. Sze SM. Ng KK. Physics of Semiconductor Devices. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2007

    Google Scholar 

  17. Bullis WM. Properties of gold in silicon. Solid State Electron, 1966, 9: 143–168

    Article  CAS  Google Scholar 

  18. Watanabe K, Munakata C. Recombination lifetime in a gold-doped p-type silicon crystal. Semicond Sci Technol, 1993, 8: 230–235

    Article  CAS  Google Scholar 

  19. Allen JE, Hemesath ER, Perea DE, Lensch-falk JL, Li ZY, Yin F, Gass MH, Wang P, Bleloch AL, Palmer RE, Lauhon LJ. High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol, 2008, 3: 168–173

    Article  CAS  Google Scholar 

  20. Schmidt V, Wittemann JV, Gösele U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem Rev, 2010, 110: 361–388

    Article  CAS  Google Scholar 

  21. Schmidt V, Wittemann JV, Senz S, Gösele U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv Mater, 2009, 21: 2681–2702

    Article  CAS  Google Scholar 

  22. Chandrasekaran H, Sumanasekara GU, Sunkara MK. Rationalization of nanowire synthesis using low-melting point metals. J Phys Chem B, 2006, 110: 18351–18357

    Article  CAS  Google Scholar 

  23. Givargizov EJ, Sheftal NN. Morphology of silicon whiskers grown by the VLS-technique. J Cryst Growth, 1971, 9: 326–329

    Article  CAS  Google Scholar 

  24. Bootsma GA, Gassen HJ. A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. J Cryst Growth, 1971, 10: 223–224

    Article  CAS  Google Scholar 

  25. Miyamoto Y, Hirata M. Role of agents in filamentary growth of amorphous silicon. Jpn J Appl Phys, 1976, 15: 1159–1160

    Article  CAS  Google Scholar 

  26. Nebol’sin VA, Shchetinin AA. Role of surface energy in the vapor-liquid-solid growth of silicon. Inorg Mater, 2003, 39: 899–903

    Article  Google Scholar 

  27. Iacopi F, Vereecken PM, Schaekers M, Caymax M, Moelans N, Blanpain B, Richard O, Detavernier C, Griffiths H. Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: An effective alternative to Au-mediated growth. Nanotechnology, 2007, 18: 505307

    Article  Google Scholar 

  28. Alet PJ, Yu LW, Patriarche G, Palacin S, Roca i Cabarrocas P. In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO. J Mater Chem, 2008, 18: 5187–5189

    Article  CAS  Google Scholar 

  29. Yu LW, Alet PJ, Picardi G, Maurin I, Roca i Cabarrocas P. Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO2 substrates. Nanotechnology, 2008, 19: 485605

    Article  Google Scholar 

  30. Jeon M, Kamisako K. Synthesis of silicon nanowires after hydrogen radical treatment. Mater Lett, 2008, 62: 3903–3905

    Article  CAS  Google Scholar 

  31. Jeon M, Kamisako K. Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application. Mater Lett, 2009, 63: 777–779

    Article  CAS  Google Scholar 

  32. Adachi MM, Anantram MP, Karim KS. Optical properties of crystalline-amorphous core-shell silicon nanowires. Nano Lett, 2010, 10: 4093–4098

    Article  CAS  Google Scholar 

  33. Rathi SJ, Jariwala BN, Beach JD, Stradins P, Craig Taylor P, Weng XJ, Ke Y, Redwing JM, Agarwal S, Collins RT. Tin-catalyzed plasma-assisted growth of silicon nanowires. J Phys Chem C, 2011, 115: 3833–3839

    Article  CAS  Google Scholar 

  34. Hofmann S, Ducati C, Neill RJ, Piscanec S, Ferrari AC, Geng J, Dunin-Borkowski RE, Robertson J. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J Appl Phys, 2003, 94: 6005–6012

    Article  CAS  Google Scholar 

  35. Aella P, Ingole S, Petuskey WT, Picraux ST. Influence of plasma stimulation on Si nanowire nucleation and orientation dependence. Adv Mater, 2007, 19: 2603–2607

    Article  CAS  Google Scholar 

  36. Yu LW, O’Donnell B, Maurice JL, Roca i Cabarrocas P. Core-shell structure and unique faceting of Sn-catalyzed silicon nanowires. Appl Phys Lett, 2010, 97: 023107

    Article  Google Scholar 

  37. Chen HT, Xu J, Chen, PC, Fang X, Qiu J, Fu Y, Zhou CW. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano, 2011, 5: 8383–8390

    Article  CAS  Google Scholar 

  38. Dan YP, Seo K, Takei K, Meza JH, Javey A, Crozier KB. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett, 2011, 11: 2527–2532

    Article  CAS  Google Scholar 

  39. Rasband W. ImageJ. 1.41o ed. National Institutes of Health. 2008

  40. Dong YJ, Yu GH, McAlpine MC, Lu W, Lieber CM. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett, 2008, 2: 386–391

    Article  Google Scholar 

  41. Marczak M, Judek J, Kozak A, Gebicki W, Jastrzebski C, Adamowicz L, Luxembourg D, Hourlier D, Mélin T. The individual core/shell silicon nanowire structure probed by Raman spectroscopy. Phys Status Solidi C, 2009, 9: 2053–2055

    Article  Google Scholar 

  42. Khoviv AM, Myachina TA, Goncharov EG, Logacheva VA, Kasatkina EV. Effect of vacuum annealing on the phase composition of In/SnO/Si, In/SnO2/Si, and Sn/In2O3/Si heterostructures. Inorg Mater, 2006, 42: 108–111

    Article  CAS  Google Scholar 

  43. Nie TX, Chen ZG, Wu YQ, Wang JL, Zhang JZ, Fan YL, Yang XJ, Jiang ZM, Zou J. Metallic and ionic Fe induced growth of Si-SiOx core-shell nanowires. J Phys Chem C, 2010, 114: 15370–15376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Ren, T., Ying, P. et al. Enhanced growth of crystalline-amorphous core-shell silicon nanowires by catalytic thermal CVD using in situ generated tin catalyst. Sci. China Chem. 55, 2573–2579 (2012). https://doi.org/10.1007/s11426-012-4717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4717-4

Keywords

Navigation