Skip to main content
Log in

Delay-induced firing behavior and transitions in adaptive neuronal networks with two types of synapses

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we study delay-induced firing behavior and transitions in adaptive Newman-Watts networks of thermosensitive neurons with electrical or chemical synapses. It is found that electrical and chemical synapse time delay-induced firing behavior and transitions differ significantly. In the case of electrical synapses, the bursts for a fixed delay involve equal number of spikes in each burst, and for certain time delays the firing can be inhibited. However, in the case of chemical synapses the bursts for a fixed delay involve different numbers of spikes in each burst, and no firing inhibition is observed. It is also shown that larger growth rates of adaptive coupling strength or larger network randomness can enhance the synchronization of bursting in the case of electrical synapses but reduce it in the case of chemical synapses. These results show that electrical and chemical synapses have different effects on delay-induced firing behavior and dynamical evolution. Compared to electrical synapses, chemical synapses might be more beneficial to the generation of firing and abundant firing transitions in adaptive and delayed neuronal networks. These findings can help to better understand different firing behaviors in neuronal networks with electrical and chemical synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. Elsevier, Amsterdam, 1991

    Google Scholar 

  2. Dhamala M, Jirsa VK, Ding MZ. Enhancement of neural synchrony by time delay. Phys Rev Lett, 2004, 92: 074104

    Article  Google Scholar 

  3. Rossoni E, Chen YH, Ding MZ, Feng JF. Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys Rev E, 2005, 71: 061904

    Article  Google Scholar 

  4. Ko T-W, Ermentrout GB. Effects of axonal time delay on synchronization and wave formation in sparsely coupled neuronal oscillators. Phys Rev E, 2007, 76: 056206

    Article  Google Scholar 

  5. Roxin A, Brunel N, Hansel D. Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett, 2005, 94:238103

    Article  Google Scholar 

  6. Wang QY, Perc M, Duan ZS, Chen GR. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112

    Article  Google Scholar 

  7. Wang QY, Duan ZS, Perc M, Chen GR. Synchronization transitions on small world neuronal networks: Effects of information transmission delay and rewiring probability. Europhys Lett, 2008, 83: 50008

    Article  Google Scholar 

  8. Wang QY, Perc M, Duan ZS, Chen GR. Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E, 2009, 80: 026206

    Article  Google Scholar 

  9. Wang QY, Chen GR, Perc M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE, 2011, 6: e15851

    Article  CAS  Google Scholar 

  10. Burić N, Todorović K, Vasović N. Synchronization of bursting neurons with delayed chemical synapses. Phys Rev E, 2008, 78: 036211

    Article  Google Scholar 

  11. Wang QY, Lu QS, Chen GR, Feng ZS, Duan LX. Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos Soliton Fract, 2009, 39: 918–925

    Article  Google Scholar 

  12. Wang QY, Lu QS, Chen GR. Synchronization transition by synaptic delay in coupled fast spiking neurons. Int J Bifurcat Chaos, 2008, 18: 1189–1198

    Article  Google Scholar 

  13. Xie YH, Gong YB, Hao YH, Ma XG. Synchronization transitions on complicated thermo-sensitive neuron networks with time delays. Biophys Chem, 2010, 146: 126–132

    Article  CAS  Google Scholar 

  14. Gong YB, Xie YH, Lin X, Hao YH, Ma XG. Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks. Chaos Soliton Fract, 2010, 43: 96–103

    Article  Google Scholar 

  15. Wu H, Hou ZH, Xin HW. Delay-enhanced spatiotemporal order in coupled neuronal systems. Chaos, 2010, 20: 043140

    Article  Google Scholar 

  16. Hao YH, Gong YB, Wang L, Ma XG, Yang CL. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling. Chaos Soliton Fract, 2011, 44:260–268

    Article  CAS  Google Scholar 

  17. Gong YB, Lin X, Wang L, Hao YH. Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks. Sci China Chem, 2011, 54: 1498–1503

    Article  CAS  Google Scholar 

  18. Hao YH, Gong YB, Lin X. Multiple resonances with time delays in scale-free networks of Hodgkin-Huxley neurons subjected to non-Gaussian noise. Sci China Chem, 2011, 54: 782–787

    Article  CAS  Google Scholar 

  19. Hao YH, Gong YB, Lin X, Ma XG. Delay-induced coherence bi-resonance-like behavior in stochastic Hodgkin-Huxley neuron networks. Sci China Chem, 2010, 53: 1762–1766

    Article  CAS  Google Scholar 

  20. Wang QY, Perc M, Duan ZS, Chen GR. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys Lett A, 2008, 372: 5681–5687

    Article  CAS  Google Scholar 

  21. Gosak M, Markovič R, Marhl M. The role of neural architecture and the speed of signal propagation in the process of synchronization of bursting neurons. Physica A, 2012, 391:2764–2770

    Article  Google Scholar 

  22. Wu H, Jiang HJ, Hou ZH. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling. Chaos Soliton Fract, 2011, 44: 836–844

    Article  Google Scholar 

  23. Franović L, Miljković V. Phase plane approach to cooperative rhythms in neuron motifs with delayed inhibitory synapses. Europhys Lett, 2010, 92: 68007

    Article  Google Scholar 

  24. Sun YZ, Zhao DH, Ruan J. Consensus in noisy environments with switching topology and time-varying delays. Physica A, 2010, 389: 4149–4161

    Article  Google Scholar 

  25. Ito J, Kaneko K. Spontaneous structure formation in a network of chaotic units with variable connection strengths. Phys Rev Lett, 2001, 88: 028701

    Article  Google Scholar 

  26. Chavez M, Valencia M, Navarro V, Latora V, Martinerie J. Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett, 2010, 104: 118701

    Article  CAS  Google Scholar 

  27. Hughes JR. Post-tetanic potentiation. Physiol Rev 1958, 38: 91–113

    CAS  Google Scholar 

  28. Achour SB, Pascual O. Glia: The many ways to modulate synaptic plasticity. Neurochem Int, 2010, 57: 440–445

    Article  Google Scholar 

  29. Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol, 2010, 20: 631–639

    Article  CAS  Google Scholar 

  30. Haas JS, Nowotny T, Abarbanel HDI. Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol, 2006, 96: 3305–3313

    Article  Google Scholar 

  31. Seliger P, Young SC, Tsimring LS. Plasticity and learning in a network of coupled phase oscillators. Phys Rev E, 2001, 65: 041906

    Article  Google Scholar 

  32. Huang D. Synchronization in adaptive weighted networks. Phys Rev E, 2006, 74: 046208

    Article  Google Scholar 

  33. Zhu JF, Zhao M, Yu W, Zhou CS, Wang BH. Better synchronizability in generalized adaptive networks. Phys Rev E, 2010, 81: 026201

    Article  Google Scholar 

  34. Wang QY, Perc M, Duan ZS, Chen GR. Impact of delays and rewiring on the dynamics of mall-world neuronal networks with two types of coupling. Physica A, 2010, 389: 3299–3306

    Article  Google Scholar 

  35. Braun HA, Huber MT, Dewald M, Schafer K, Voigt K. Computer simulations of neuronal signal transduction: the role of nonlinear dynamics and noise. Int J Bifurcat Chaos 1998, 8: 881–889

    Article  Google Scholar 

  36. Braun HA, Wissing H, Schäfer K, Hirsch MC. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 1994, 367:270–273

    Article  CAS  Google Scholar 

  37. Braun HA, Schäfer K, Voigt K, Peters R, Bretschneider F, Pei X, Wilkens L, Moss F. Low-dimensional dynamics in sensory biology. 1: Thermally sensitive electroreceptors of the catfish. J Comput Neurosci 1997, 4: 335–347

    Article  CAS  Google Scholar 

  38. Braun HA, Dewald M, Schäfer K, Voigt K, Pei X, Dolan K, Moss F. Low-dimensional dynamics in sensory biology. 2. Facial cold receptors of the rat. J Comput Neurosci 1999, 7: 17–32

    Article  CAS  Google Scholar 

  39. Feudel U, Neiman A, Pei X, Wojtenek W, Braun H, Huber M, Moss F. Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2000, 10:231–239

    Article  Google Scholar 

  40. Newman MEJ, Watts DJ. Renormalization group analysis of the small-world network model. Phys Lett A 1999., 263: 341–346

    Article  CAS  Google Scholar 

  41. Newman MEJ, Watts DJ. Scaling and percolation in the small-world network model. Phys Rev E 1999, 60: 7332–7342

    Article  CAS  Google Scholar 

  42. Newman MEJ. Models of the small world. J Stat Phys, 2000, 101: 814–841

    Article  Google Scholar 

  43. Destexhe A, Mainen ZF, Sejnowski TJ. An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput 1994, 6: 14–18

    Article  Google Scholar 

  44. Wu D, Zhu SQ, Luo XQ, Wu L. Effect of adaptive coupling on stochastic resonance of small-world networks. Phys Rev E, 2011, 84: 021102

    Article  Google Scholar 

  45. Gong YB, Xu B, Xu Q, Yang CL, Ren TQ, Hou ZH, Xin HW. Ordering spatiotemporal chaos in complicated thermosensitive neuron networks. Phys Rev E, 2006, 73: 046137

    Article  Google Scholar 

  46. Wang QY, Sanjuan MAF, Chen GR. Transition of phase locking modes in a minimal neuronal network. Neurocomputing, 2012, 81: 60–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Gong, Y. & Wang, B. Delay-induced firing behavior and transitions in adaptive neuronal networks with two types of synapses. Sci. China Chem. 56, 222–229 (2013). https://doi.org/10.1007/s11426-012-4710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4710-y

Keywords

Navigation