Skip to main content
Log in

Application of a novel redox-active electrolyte in MnO2-based supercapacitors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This paper reports a novel strategy for preparing redox-active electrolyte through introducing a redox-mediator (p-phenylenediamine, PPD) into KOH electrolyte for the application of ball-milled MnO2-based supercapacitors. The morphology and compositions of ball-milled MnO2 were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical properties of the supercapacitor were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. The introduction of p-phenylenediamine significantly improves the performance of the supercapacitor. The electrode specific capacitance of the supercapacitor is 325.24 F g−1, increased by 6.25 folds compared with that of the unmodified system (44.87 F g−1) at the same current density, and the energy density has nearly a 10-fold increase, reaching 10.12 Wh Kg−1. In addition, the supercapacitor exhibits good cycle-life stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd. New York: Kluwer Academic/ Plenum Publishers, 1999

    Google Scholar 

  2. Lang XY, Hirata A, Fujita T, Chen MW. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nano, 2011, 6: 232–236

    Article  CAS  Google Scholar 

  3. Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett, 2006, 6: 2690–2695

    Article  CAS  Google Scholar 

  4. Hu CC, Hung CY, Chang KH, Yang YL. A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors. J Power Sources, 2011, 196: 847–850

    Article  CAS  Google Scholar 

  5. Wei WF, Cui XW, Chen WX, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev, 2011, 40: 1697–1721

    Article  CAS  Google Scholar 

  6. Ni JP, Lu WC, Zhang LM, Yue BH, Shang XF, Lv Y. Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem C, 2008, 113: 54–60

    Article  Google Scholar 

  7. Zhao X, Johnston C, Crossley A, Grant PS. Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. J Mater Chem, 2010, 20: 7637–7644

    Article  CAS  Google Scholar 

  8. Meher SK, Justin P, Ranga RG. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. Acs Appl Mater Inter, 2011, 3: 2063–2073

    Article  CAS  Google Scholar 

  9. Feng Y, Zhang ML, Chen Y, Han Y, Shi ZH. Inorganic salt water solution reaction synthesis and capapcitor characteristics of nano-MnO2 powder. J Chin Cera Soc, 2005, 33: 318–322 (in chinese)

    CAS  Google Scholar 

  10. Wang HQ, Yang GF, Li QY, Zhong XX, Wang FP, Li ZS, Li YH. Porous nano-MnO2: Large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J Chem, 2011, 35: 469–475

    Article  CAS  Google Scholar 

  11. Su LH, Zhang XG, Mi CH, Gao B, Liu Y. Improvement of the capacitive performances for Co-Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Phys Chem Chem Phys, 2009, 11: 2195–2202

    Article  CAS  Google Scholar 

  12. Sun GH, Li KX, Sun CG. Electrochemical performance of electrochemical capacitors using Cu(II)-containing ionic liquid as the electrolyte. Micropor Mesopor Mat, 2010, 128: 56–61

    Article  CAS  Google Scholar 

  13. Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chemie Inte Ed, 2011, 50: 1699–1701

    Article  Google Scholar 

  14. Yin YJ, Zhou JJ, Mansour AN, Zhou XY. Effect of NaI/I2 mediators on properties of PEO/LiAlO2 based all-solid-state supercapacitors. J Power Sources, 2011, 196: 5997–6002

    Article  CAS  Google Scholar 

  15. Wu JH, Lan Z, Lin J, Huang ML, Hao SC, Sato T, Yin S. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater, 2007, 19: 4006–4011

    Article  CAS  Google Scholar 

  16. Ke NJ, Lu SS, Cheng SH. A strategy for the determination of dopamine at a bare glassy carbon electrode: p-phenylenediamine as a nucleophile. Electrochem Commun, 2006, 8: 1514–1520

    Article  CAS  Google Scholar 

  17. Li M, Yang CY, Zhou WK, Zhu M, Reversible oxidation of p-phenylenediamine on hemoglobin /poly(L-glutamic acid) /glassy carbon modified electrode. Chinese J App Chem, 2010, 9: 1093–1098 (in chinese)

    Google Scholar 

  18. Jiao K, Sun W, Zhang SS, Sun G. Application of p-phenylenediamine as an electrochemical substrate in peroxidase-mediated voltammetric enzyme immunoassay. Anal Chim Acta, 2000, 413: 71–78

    Article  CAS  Google Scholar 

  19. Zhao WF, Fang M, Wu FR, Wu H, Wang LW, Chen GH. Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem, 2010, 20: 5817–5819

    Article  CAS  Google Scholar 

  20. Zhang WX, Yang ZH, Wang X, Zhang YC, Wen XG, Yang SH. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catal Commun, 2006, 7: 408–412

    Article  Google Scholar 

  21. Hashmi SA, Kumar A, Tripathi SK. Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes. Eur Polym J, 2005, 41: 1373–1379

    Article  CAS  Google Scholar 

  22. Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater, 2004, 16: 3184–3190

    Article  CAS  Google Scholar 

  23. Li F, Shi JJ, Qin X. Synthesis and supercapacitor characteristics of PANI/CNTs composites. Chinese Sci Bull, 2009, 54: 3900–3905 (in chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiHuai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Wu, J., Fan, L. et al. Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Sci. China Chem. 55, 1319–1324 (2012). https://doi.org/10.1007/s11426-012-4673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4673-z

Keywords

Navigation