Skip to main content
Log in

Flexible and high-energy density asymmetrical supercapacitors based on polyindole/GCN/MnO2 nanocomposite for energy storage applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, an in situ oxidation polymerization approach and a surface adsorption procedure were combined to create a polyindole/graphitic carbon nitride (GCN)/manganese dioxide (MnO2) (Pin/GCN/MnO2) nanocomposite. This nanocomposite was used as an electrode for a supercapacitor. Investigations were made on the nanomorphology and crystal structure of MnO2, Pin/MnO2, GCN/MnO2, and Pin/GCN/MnO2. The developed Pin/GCN/MnO2 electrode-based supercapacitor's electrochemical performance was evaluated using cyclic voltammetry (CV) and AC impedance techniques in a 3 M KOH electrolyte. The Pin/GCN/MnO2 nanocomposite's average crystallite size is 40 nm. The Pin/GCN/MnO2 has a network of agglomerated GCN and Pin with extra spherical forms that are associated to MnO2 nanoparticles. Their absorption intensities improve with the development of the Pin/GCN/MnO2 nanocomposite. The specific capacitance of Pin/GCN/MnO2 in 3 M KOH was determined to be 1377 F/g at a current density of 5 A/g. The Pin/GCN/MnO2 electrode in KOH has average specific energy and specific power densities of 990 Wh kg−1 and 3305 W kg−1, respectively. Only 2% of the capacitance's initial value is lost after 10,000 cycles. The results illustrate the extraordinary stability and effective performance of the Pin/GCN/MnO2 electrode used in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Maślana K, Kaleńczuk RJ, Zielińska B, Mijowska E (2020) Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials 13(6):1349

    Article  Google Scholar 

  2. Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy J-F (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4:4315. https://doi.org/10.1038/srep04315

    Article  CAS  Google Scholar 

  3. Ghiyasiyan-Arani M, Salavati-Niasari M (2019) New nanocomposites based on Li–Fe–Mn double spinel and carbon self-doped graphitic carbon nitrides with synergistic effect for electrochemical hydrogen storage application. Ind Eng Chem Res 58(51):23057–23067

    Article  CAS  Google Scholar 

  4. Vlad A, Singh N, Melinte S, Gohy J-F, Ajayan PM (2016) Carbon redox-polymer-gel hybrid supercapacitors. Sci Rep 6:22194. https://doi.org/10.1038/srep22194

    Article  CAS  Google Scholar 

  5. Wei B, Liang H, Wang R, Zhang D, Qi Z, Wang Z (2018) One-step synthesis of graphitic-C3N4/ZnS composites for enhanced supercapacitor performance. J Energy Chem 27(2):472–477

    Article  Google Scholar 

  6. Hou JF, Gao JF, Kong LB (2021) A crystalline nickel vanadium oxide@ amorphous cobalt boride nanocomposites with enhanced specific capacity for hybrid supercapacitors. Electrochim Acta 377:138086

    Article  CAS  Google Scholar 

  7. Chang X, Zhai X, Sun S, Gu D, Dong L, Yin Y, Zhu Y (2017) MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance. Nanotechnology 28(13):135705

    Article  Google Scholar 

  8. Barde RV, Nemade KR, Waghuley SA (2022) Optimization of supercapacitive properties of polyindole by dispersion of MnO2 nanoparticles. Chem Phys Impact 5:100100. https://doi.org/10.1016/j.chphi.2022.100100

    Article  Google Scholar 

  9. Marriam I, Wang Y, Tebyetekerwa M (2020) Polyindole batteries and supercapacitors. Energy Storage Mater 33:336–359. https://doi.org/10.1016/j.ensm.2020.08.010

    Article  Google Scholar 

  10. Cai Z, Geng M, Tang Z (2004) Novel battery using conducting polymers: polyindole and polyaniline as active materials. J Mater Sci 39:4001–4003. https://doi.org/10.1023/B:JMSC.0000031481.12810.39

    Article  CAS  Google Scholar 

  11. Verma CJ, Keshari AS, Dubey P, Prakash R (2020) Polyindole modified g-C3N4 nanohybrids via in-situ chemical polymerization for its improved electrochemical performance. Vacuum 1(177):109363. https://doi.org/10.1016/j.vacuum.2020.109363

    Article  CAS  Google Scholar 

  12. Mudila H, Prasher P, Kumar M et al (2019) Critical analysis of polyindole and its composites in supercapacitor application. Mater Renew Sustain Energy 8:9. https://doi.org/10.1007/s40243-019-0149-9

    Article  Google Scholar 

  13. Inzelt G (2018) Conducting polymers: past, present, future. J Electrochem Sci Eng 8(1):3–37. https://doi.org/10.5599/jese.448

    Article  CAS  Google Scholar 

  14. Zhijiang C, Guang Y (2010) Synthesis of polyindole and its evaluation for Li-ion battery applications. Synth Met 160:1902–1905. https://doi.org/10.1016/j.synthmet.2010.07.007

    Article  CAS  Google Scholar 

  15. Thadathil A, Edavan Chathoth N, Ismail YA, Anjukandi P, Periyat P (2022) Three-dimensional mesoporous polyindole architectures for supercapacitor applications. J Phys Chem C 126(40):16965–82. https://doi.org/10.1021/acs.jpcc.2c05132

    Article  CAS  Google Scholar 

  16. Wang B, Qiu J, Feng H, Sakai E (2015) Preparation of graphene oxide/polypyrrole/multi-walled carbon nanotube composite and its application in supercapacitors. Electrochim Acta 151:230–239. https://doi.org/10.1016/j.electacta.2014.10.153

    Article  CAS  Google Scholar 

  17. Sun K, Hua F, Cui S, Zhu Y, Peng H, Ma G (2021) An asymmetric supercapacitor based on controllable WO3 nanorod bundle and alfalfa-derived porous carbon. RSC Adv 11(59):37631–37642

    Article  CAS  Google Scholar 

  18. Soltani H, Bahiraei H, Ghasemi S (2022) Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets. J Alloy Compd 904:163565

    Article  CAS  Google Scholar 

  19. Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim Acta 53:7690–7695. https://doi.org/10.1016/j.electacta.2008.04.028

    Article  CAS  Google Scholar 

  20. El Nady J, Shokry A, Khalil M et al (2022) One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci Rep 12:3611. https://doi.org/10.1038/s41598-022-07483-y

    Article  CAS  Google Scholar 

  21. Wang W, Ren G, Wang M, Liu Y, Wu S, Shen J (2018) A novel composite for energy storage devices: core–shell MnO2/polyindole nanotubes supported on reduced graphene oxides. J Mater Sci Mater Electron 29(7):5548–5560. https://doi.org/10.1007/s10854-018-8523-4

    Article  CAS  Google Scholar 

  22. Purty B, Choudhary RB, Biswas A, Udayabhanu G (2019) Chemically grown mesoporous f-CNT/α-MnO2/PIn nanocomposites as electrode materials for supercapacitor application. Polym Bull 76(4):1619–1640. https://doi.org/10.1007/s00289-018-2458-z

    Article  CAS  Google Scholar 

  23. Yoon JH, Kumar YA, Sambasivam S, Hira SA, Krishna TNV, Zeb K, Uddin W, Kumar KD, Obaidat IM, Kim S, Kim HJ (2020) Highly efficient copper-cobalt sulfide nano-reeds array with simplistic fabrication strategy for battery-type supercapacitors. J Energy Storage 32:101988

    Article  Google Scholar 

  24. Yedluri AK, Kim HJ (2019) Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv 9(2):1115–1122

    Article  CAS  Google Scholar 

  25. Lu C, Yang Y, Chen X (2019) Ultra-thin conductive graphitic carbon nitride assembly through van der Waals epitaxy toward high-energy-density flexible supercapacitors. Nano Lett 19(6):4103–4111

    Article  CAS  Google Scholar 

  26. Idris MB, Sappani D (2018) Unveiling mesoporous graphitic carbon nitride as a high performance electrode material for supercapacitors. Chemistry Select 3(40):11258–11269

    CAS  Google Scholar 

  27. Kavil J, Anjana PM, Periyat P, Rakhi RB (2018) One-pot synthesis of gC3N4/MnO2 and gC3N4/SnO2 hybrid nanocomposites for supercapacitor applications. Sustain Energy Fuels 2(10):2244–2251

    Article  CAS  Google Scholar 

  28. Ma J, Tao XY, Zhou SX, Song XZ, Zhu YB, Guo LT, Liu ZS, Fan HL, Wei XY (2019) Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode. J Electroanal Chem 835:346–353

    Article  CAS  Google Scholar 

  29. Zhu Y, Tan Y, Li H (2023) MoO3 nanoplates preparation via self-sacrifice C3N4 for supercapacitors in an acid electrolyte. J Energy Storage 60:106657

    Article  Google Scholar 

  30. Wu YZ, Chen M, Yan XH, Ren J, Dai Y, Wang JJ, Pan JM, Wang YP, Cheng XN (2017) Hydrothermal synthesis of Fe3O4 nanorods/graphitic C3N4 composite with enhanced supercapacitive performance. Mater Lett 198:114–117

    Article  CAS  Google Scholar 

  31. Elango M, Deepa M, Subramanian R, Musthafa AM (2017) Synthesis, characterization of polyindole/AgZnO nanocomposites and its antibacterial activity. J Alloys Compd 5(696):391–401. https://doi.org/10.1016/j.jallcom.2016.11.258

    Article  CAS  Google Scholar 

  32. Du P, Dong Y, Dong Y et al (2022) Fabrication of uniform MnO2 layer-modified activated carbon cloth for high-performance flexible quasi-solid-state asymmetric supercapacitor. J Mater Sci 57:3497–3512. https://doi.org/10.1007/s10853-021-06728-x

    Article  CAS  Google Scholar 

  33. Zhou J, Guo M, Wang L, Ding Y, Zhang Z, Tang Y, Liu C, Luo S (2019) 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chem Eng J 366:163–171

    Article  CAS  Google Scholar 

  34. Xavier JR, Vinodhini SP (2023) Fabrication of reduced graphene oxide encapsulated MnO2/MnS2 nanocomposite for high performance electrochemical devices. J Porous Mater 30:1897–1910. https://doi.org/10.1007/s10934-023-01473-9

    Article  CAS  Google Scholar 

  35. Ghosh K, Srivastava SK (2021) Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets. ACS Omega 6(7):4582–4596

    Article  CAS  Google Scholar 

  36. Xavier JR (2023) Evaluation of reduced graphene oxide/WO3/WS2 hybrids for high performance supercapacitor electrode. J Alloy Compd 947:169483

    Article  CAS  Google Scholar 

  37. Lopes OF, Paris EC, Ribeiro C (2014) Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: a mechanistic study. Appl Catal B 144:800–808. https://doi.org/10.1016/j.apcatb.2013.08.031

    Article  CAS  Google Scholar 

  38. Vinodhini SP, Xavier JR (2023) Synthesis and characterization of reduced graphene oxide wrapped MoO3/TiS2 nanocomposite for high performance energy storage applications. Mater Sci Eng B 291:116375

    Article  CAS  Google Scholar 

  39. Subhash KG, Benoy MD, Duraimurugan J, Prabhu S, Siranjeevi R, Ramesh R, Kumar GS, Shkir M (2022) Synergistic effect of NiS/g-C3N4 nanocomposite for high-performance asymmetric supercapacitors. Inorg Chem Commun 142:109719

    Article  Google Scholar 

  40. Xie G, Liu X, Li Q et al (2017) The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors. J Mater Sci 52:10915–10926. https://doi.org/10.1007/s10853-017-1116-4

    Article  CAS  Google Scholar 

  41. Elango M, Deepa M, Subramanian R, Mohamed Musthafa A (2018) Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym-Plast Technol Eng 57(14):1440–1451. https://doi.org/10.1080/03602559.2017.1410832

    Article  CAS  Google Scholar 

  42. Wan X, Yang S, Cai Z, He Q, Ye Y, Xia Y, Li G, Liu J (2019) Facile synthesis of MnO2 nanoflowers/N-doped reduced graphene oxide composite and its application for simultaneous determination of dopamine and uric acid. Nanomaterials 9(6):847. https://doi.org/10.3390/nano9060847

    Article  CAS  Google Scholar 

  43. Inagaki M, Tsumura T, Kinumoto T, Toyoda M (2019) Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 141:580–607

    Article  CAS  Google Scholar 

  44. Ensafi AA, Abarghoui MM, Rezaei B (2019) Graphitic carbon nitride nanosheets coated with Ni2CoS4 nanoparticles as a high-rate electrode material for supercapacitor application. Ceram Int 45(7):8518–8524

    Article  CAS  Google Scholar 

  45. Karuppaiah M, Benadict Joseph X, Wang SF, Sriram B, Antilen Jacob G, Ravi G (2021) Engineering architecture of 3D-urchin-like structure and 2d-nanosheets of Bi2S3@ g-C3N4 as the electrode material for a solid-state symmetric supercapacitor. Energy Fuels 35(15):12569–12580

    Article  CAS  Google Scholar 

  46. Martínez-Cartagena ME, Bernal-Martínez J, Banda-Villanueva A, Enríquez-Medrano J, Lechuga-Islas VD, Magaña I, Córdova T, Morales-Acosta D, Olivares-Romero JL, Díaz-de-León R (2022) Biomimetic synthesis of PANI/graphitic oxidized carbon nitride for supercapacitor applications. Polymers 14(18):3913

    Article  Google Scholar 

  47. Khasim S, Pasha A, Lakshmi M, Panneerselvam C, Ullah MF, Darwish AAA, Hamdalla TA, Alfadhli S, Al-Ghamdi SA (2022) Synthesis of g-C3N4/CuO nanocomposite as a supercapacitor with improved electrochemical performance for energy storage applications. Int J Electrochem Sci 17(8):220838

    Article  CAS  Google Scholar 

  48. Saha S, Maji P, Pethsangave DA, Roy A, Ray A, Some S et al (2019) Effect of morphological ordering on the electrochemical performance of MnO2-graphene oxide composite. Electrochim Acta 317:199–210. https://doi.org/10.1016/j.electacta.2019.05.148

    Article  CAS  Google Scholar 

  49. Humayun H, Begum B, Bilal S, Röse P (2023) Polyindole embedded nickel/zinc oxide nanocomposites for high-performance energy storage applications. Nanomaterials 13(3):618. https://doi.org/10.3390/nano13030618

    Article  CAS  Google Scholar 

  50. Chahal P, Madaswamy SL, Lee SC, Wabaidur SM, Dhayalan V, Ponnusamy VK, Dhanusuraman R (2022) Novel manganese oxide decorated polyaniline/graphitic carbon nitride nanohybrid material for efficient supercapacitor application. Fuel 330:125531

    Article  CAS  Google Scholar 

  51. Zhou Xi, Wang A, Pan Y, Chenfei Yu, Zou Y, Zhou Y, Chen Q, Shishan Wu (2015) Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. J Mater Chem A 3:13011–13015

    Article  CAS  Google Scholar 

  52. Meftahi A, Reisi-Vanani A, Shabani-Nooshabadi M (2023) Comparison of performance of CuI/g-C3N4 nanocomposites synthesized on Ni-foam and graphitic substrates as suitable electrode materials for supercapacitors. Fuel 331:125683

    Article  CAS  Google Scholar 

  53. Santos RS, Babu RS, Devendiran M, Haddad DB, De Barros ALF (2022) Facile synthesis of transition metal (M=Cu, Co) oxide grafted graphitic carbon nitride nanosheets for high performance asymmetric supercapacitors. Mater Lett 308:131156

    Article  CAS  Google Scholar 

  54. Reghunath BS, Rajasekaran S, KR SD, Saravanakumar B, William JJ, Pinheiro D, Govindarajan D, Kheawhom S (2022) Fabrication of bismuth ferrite/graphitic carbon nitride/N-doped graphene quantum dots composite for high performance supercapacitors. J Phys Chem Solids 1(171):110985

    Article  Google Scholar 

  55. Wu K, Zhao J, Wu R, Ruan B, Liu H, Wu M (2018) The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. J Electroanal Chem 823:527–530

    Article  CAS  Google Scholar 

  56. Surender S, Kavipriyah MN, Balakumar S (2023) Synergistic effect in g-C3N4/CuO nanohybrid structures as efficient electrode material for supercapacitor applications. Inorg Chem Commun 150:110557

    Article  CAS  Google Scholar 

  57. Baruah K, Sarmah D, Kumar A (2021) Ternary hybrid nanocomposites of polypyrrole nanotubes with 2D self-assembled heterostructures of protonated g-C3N4-rGO as supercapacitor electrodes. Ionics 27(7):3153–3168

    Article  CAS  Google Scholar 

  58. Dinesh A, Ramadas A, Anantha MS, Umesh MK, Venkatesh K, Kundu M, Muralidhara HB, Kumar KY (2022) Synergistic behavior of vanadium pentoxide-carbon sphere electrocatalyst towards iron-based redox flow battery and supercapacitor applications. J Energy Storage 55:105487

    Article  Google Scholar 

  59. Munir S, Aadil M, Warsi MF, Somaily HH, Ul Ain N, Shahid M (2022) Synergistic effect of noble metal doping and composite formation to boost the electrochemical properties of vanadium pentoxide. Ceram Int 48(22):33306–33314

    Article  CAS  Google Scholar 

  60. Zhang J, Ding J, Li C, Li B, Li D, Liu Z, Cai Q, Zhang J, Liu Y (2017) Fabrication of novel ternary three-dimensional RuO2/graphitic-C3N4@ reduced graphene oxide aerogel composites for supercapacitors. ACS Sustain Chem Eng 5(6):4982–4991

    Article  CAS  Google Scholar 

  61. Jiang D, Xu Q, Meng S, Xia C, Chen M (2017) Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes. J Alloy Compd 706:41–47

    Article  CAS  Google Scholar 

  62. Zhao Y, Xu L, Huang S, Bao J, Qiu J, Lian J, Xu L, Huang Y, Xu Y, Li H (2017) Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J Alloy Compd 702:178–185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received from the funding agency to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R., Vinodhini, S.P. Flexible and high-energy density asymmetrical supercapacitors based on polyindole/GCN/MnO2 nanocomposite for energy storage applications. J Mater Sci 58, 18147–18168 (2023). https://doi.org/10.1007/s10853-023-09176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09176-x

Navigation