Skip to main content
Log in

Nature of the Ga-Ga bonding in Na2[Arx*GaGaArx*] (Arx* = C6H3-2,6-(C6H5)2): Electron localization function analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The nature of the Ga-Ga bonding in Na2[Arx*GaGaArx*] (Arx* = C6H3-2,6-(C6H5)2) has been investigated and compared with that of in H2[Arx*GaGaArx*] using electron localization function (ELF) and orbital analysis. The calculation results show that in Na2[Arx*GaGaArx*], the Ga-Ga interaction is a non-classical triple bond, the heart of Na2[Arx*GaGaArx*] is the Ga2Na2 cluster rather than a simple Ga-Ga bond, and the contribution of the sodium atoms to the short Ga-Ga bond length is considerable. As the two sodium atoms are substituted by two hydrogen atoms, the Ga-Ga bond is replaced by two 3-center, 2-electron (3c-2e) Ga-H-Ga covalent bridged bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang YZ, Robinson GH. Organometallics of the group 13 M-M bond (M = Al, Ga, In) and the concept of metalloaromaticity. Organometallics. 2007, 26: 2–11

    Article  CAS  Google Scholar 

  2. Ponec R, Yuzhakov G, Gironés X, Frenking G. Chemical structures from the analysis of domain-averaged Fermi holes. The nature of Ga-Ga bonding in PhGaGaPh2− and (PhGaGaPh)Na2. Organometallics. 2004, 23: 1790–1796

    Article  CAS  Google Scholar 

  3. Power PP. Homonuclear multiple bonding in heavier main group elements. J Chem Soc, Dalton Trans, 1998, 2939–2951

  4. Power PP. π-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem Rev, 1999, 99: 3463–3503

    Article  CAS  Google Scholar 

  5. Weidenbruch M. Some recent advances in the chemistry of silicon and its homologues in low coordination states. J Organomet Chem, 2002, 646: 39–52

    Article  CAS  Google Scholar 

  6. Uhl W. The reactivity of organoelement compounds with aluminium-aluminium, gallium-gallium and indium-indium bonds. Coord Chem Rev, 1997, 163: 1–32

    Article  CAS  Google Scholar 

  7. Linti G, Schnoöckel H. Low valent aluminum and gallium compounds — structural variety and coordination modes to transition metal fragments. Coord Chem Rev, 2000, 206–207: 285–319

    Article  Google Scholar 

  8. Robinson GH. Gallanes, gallenes, cyclogallenes, and gallynes: Organometallic chemistry about the gallium-gallium Bond. Acc Chem Rev, 1999, 32: 773–782

    Article  CAS  Google Scholar 

  9. Weidenbruch M. Triple bonds of the heavy main-group elements: Acetylene and alkylidyne analogues of Group 14. Angew Chem, 2003, 42: 2222–2224

    Article  CAS  Google Scholar 

  10. Su JR, Li XW, Crittendon RC, Robinson GH. How short is a -Ga≡Ga-triple bond? Synthesis and molecular structure of Na2[Mes*2C6H3-GaGaC6H3 Mes*2] (Mes* = 2,6-bis(2,4,6-i-Pr3C6H2): The first gallyne. J Am Chem Soc, 1997, 119: 5471–5472

    Article  CAS  Google Scholar 

  11. Takagi N, Schmidt MW, Nagase S. Ga-Ga multiple bond in Na2[Ar*GaGaAr*] (Ar* = C6H3-2,6-(C6H2-2,4,6-i-Pr3)2). Organometallics, 2001, 20: 1646–1651

    Article  CAS  Google Scholar 

  12. King RB, Robinson GH. Analogies between Group 13 metal clusters in organometallic and intermetallic structures. J Organomet Chem, 2000, 597: 54–60

    Article  CAS  Google Scholar 

  13. Downs AJ. Recent advances in the chemistry of the Group 13 metals: Hydride derivatives and compounds involving multiply bonded Group 13 metal atoms. Coord Chem Rev, 1999, 189: 59–100

    Article  CAS  Google Scholar 

  14. Dagani RA. Gallium triple bonds under fire. Chem Eng News, 1998, 76: 31–33

    Article  Google Scholar 

  15. Molina JM, Dobado JA, Heard GL, Bader RFW, Sundberg MR. Recognizing a triple bond between main group atoms. Theor Chem Acc, 2001, 150: 365–371

    Article  Google Scholar 

  16. Xie YM, Grev RS, Gu J, Schaefer III HF, Schleyer PvR, Su J, Li XW, Robinson GH. The nature of the gallium-gallium triple bond. J Am Chem Soc, 1998, 120: 3773–3880

    Article  CAS  Google Scholar 

  17. Bytheway I, Lin ZY. Understanding nonlinearity in multiply-bonded digallium molecules. J Am Chem Soc, 1998, 120: 12133–121134

    Article  CAS  Google Scholar 

  18. Cotton FA, Cowley AH, Feng X. The use of density functional theory to understand and predict structures and bonding in main group compounds with multiple bonds. J Am Chem Soc, 1998, 120: 1795–1799

    Article  CAS  Google Scholar 

  19. Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys, 1990, 92: 5387–5403

    Google Scholar 

  20. Silvi B, Savin A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 1994, 371: 683–686

    Article  CAS  Google Scholar 

  21. Savin A, Nesper R, Wengert S, Fassler T. ELF: The electron localization function. Angew Chem Int Ed, 1997, 36: 1808–1832

    Article  CAS  Google Scholar 

  22. Silvi B. The synaptic order: A key concept to understand multicenter bonding. J Mol Struct, 2002, 4614: 3–10

    Article  Google Scholar 

  23. Häussermann U, Wengert S, Nesper R. Unequivocal partitioning of crystal structures, exemplified by intermetallic phases containing aluminium. Angew Chem Int Ed, 1994, 33: 2073–2076

    Article  Google Scholar 

  24. Sorkin A, Truhlar DG, Amin EA. Energies, geometries, and charge distributions of Zn molecules, clusters, and biocenters from coupled cluster, density functional, and neglect of diatomic differential overlap models. J Chem Theory Comput, 2009, 5: 1254–1265

    Article  CAS  Google Scholar 

  25. Gaussian 03, Revision D. 01. Wallingford CT: Gaussian, Inc., 2004

  26. Noury S, Krokidis X, Fuster F, Silvi B. TopMod Package. Paris: Universite Pierre et. Marie Curie, 1997

    Google Scholar 

  27. Noury S, Krokidis X, Fuster F, Silvi B. Computational tools for the electron localization function topological analysis. Comp Chem, 1999, 23: 597–604

    Article  CAS  Google Scholar 

  28. Cotton FA, Cowley AH, Feng XJ. The use of density functional theory to understand and predict structures and bonding in main group compounds with multiple bonds. J Am Chem Soc, 1998, 120: 1795–1799

    Article  CAS  Google Scholar 

  29. Macchia GL, Gagliardi L, Power PP, Brynda M. Large differences in secondary metal-arene interactions in the transition-metal dimers ArMMAr (Ar = terphenyl; M = Cr, Fe, or Co): Implications for Cr-Cr quintuple bonding. J Am Chem Soc, 2008, 130: 5104–5114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYan Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Meng, L., Zheng, S. et al. Nature of the Ga-Ga bonding in Na2[Arx*GaGaArx*] (Arx* = C6H3-2,6-(C6H5)2): Electron localization function analysis. Sci. China Chem. 55, 1370–1376 (2012). https://doi.org/10.1007/s11426-012-4640-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4640-8

Keywords

Navigation