Skip to main content
Log in

Controllable hydrothermal synthesis of nanocrystal TiO2 particles and their use in dye-sensitized solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A simple method for the controllable hydrothermal synthesis of nanocrystalline anatase TiO2 (nc-TiO2) particles involving the selection of suitable organic alkali peptizing agents is reported. A dye-sensitized solar cell (DSSC) with square-like nc-TiO2 particles with side lengths about 8–13 nm—prepared using tetraethylammonium hydroxide (TEAOH)—in the photoelectrode showed higher photovoltaic performance than two other DSSCs with square-like nc-TiO2 particles with side lengths about 7–10 nm—prepared using tetrabutylammonium hydroxide—or elongated nc-TiO2 particles with lengths about 18–35 nm and width about 10–18 nm—prepared using tetramethylammonium hydroxide (TMAOH)—in the photoelectrodes. When a scattering layer prepared from sub-micron size spheres or cone-like nc-TiO2 particles—synthesized using a higher concentration of TMAOH—was added on top of the photoelectrode fabricated from nc-TiO2 synthesized with TEAOH, the energy conversion efficiency of the DSSC was markedly increased from 6.77% to 8.18%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 2010, 353: 737–740

    Article  Google Scholar 

  2. Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Grätzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80: 3157–3171

    Article  Google Scholar 

  3. Ito S, Murakami T, Comte P, Liska P, Grätzel C, Nazeeruddin M, Grätzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516: 4613–4619

    Article  CAS  Google Scholar 

  4. Zhao Y, Zhai J, Tan S, Wang L, Jiang L, Zhu D. TiO2 micro/nano-composite structured electrodes for quasi-solid-state dye-sensitized solar cells. Nanotechnology, 2006, 17: 2090–2097

    Article  CAS  Google Scholar 

  5. Wu J, Hao S, Lin J, Huang M, Huang Y, Lan Z, Li P. Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells. Cryst Growth Des, 2008, 8: 247–252

    Article  CAS  Google Scholar 

  6. Li J, Yu Y, Lin J, Chen Q, Li J, Xu D. Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors used in dye-sensitized solar cells. Cryst Growth Des, 2010, 10: 2111–2115

    Article  CAS  Google Scholar 

  7. Yang J, Mei S, Ferreira JMF. Hydrothermal processing of nanocrystalline anatase films from tetraethylammonium hydroxide peptized titania sols. J Eur Ceram Soc, 2004, 24: 335–339

    Article  CAS  Google Scholar 

  8. Burnside SD, Shklover V, Barbé C, Comte P, Arendse F, Brooks K, Grätzel M. Self-organization of TiO2 nanoparticles in thin films. Chem Mater, 1998, 10: 2419–2425

    Article  CAS  Google Scholar 

  9. Yang J, Mei S, Ferreira JMF. Hydrothermal synthesis of well-dispersed TiO2 nano-crystals. J Am Ceram Soc, 2002, 83: 1361–1368

    Article  Google Scholar 

  10. Yang J, Mei S, Ferreira JMF. Hydrothermal synthesis of nanosized titania powders: Influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Mater Res, 2000, 17: 2197–2200

    Article  Google Scholar 

  11. Liu G, Sun C, Yang H, Smith SC, Wang L, Lu GQ, Cheng HM. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun, 2009, 46: 755–757

    Article  CAS  Google Scholar 

  12. Li G, Sun C, Li L, Boerio-Goates J, Woodfield BF. High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc, 2005, 127: 8659–8666

    Article  CAS  Google Scholar 

  13. Menzies DB, Dai Q, Bourgeois L, Caruso RA, Cheng YB, Simon GP, Spiccia L. Modification of mesoporous TiO2 electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: Preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells. Nanotechnology, 2007, 18: 125608–125619

    Article  Google Scholar 

  14. Jiu J, Isoda S, Motonari A, Wang H. Dye-sensitized solar cell based on nanocrystalline TiO2 with 3–10 nm in diameter. J Mater Sci: Mater Electron, 2007, 18: 593–597

    Article  CAS  Google Scholar 

  15. Koo HJ, Park J, Yoo B, Yoo K, Kim K, Park NG. Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg Chim Acta, 2008, 361: 677–683

    Article  CAS  Google Scholar 

  16. Wang ZS, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev, 2004, 248: 1381–1389

    Article  CAS  Google Scholar 

  17. Ma BB, Gao R, Wang LD, Zhu YF, Shi YT, Geng Y, Dong HP, Qiu Y. Recent progress in interface modification for dye-sensitized solar cells. Sci China Chem, 2010, 53: 1669–1678

    Article  CAS  Google Scholar 

  18. Chiba Y, Islam A, Komiya R, Koide N, Han L. Conversion efficiency of 10.8 % by a dye-sensitized solar cell using a TiO2 electrode with high haze. Appl Phys Lett, 2006, 88: 223505–223508

    Article  Google Scholar 

  19. Qiu Y, Chen W, Yang S. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: A candidate for high-efficiency dye-sensitized solar cells. Angew Chem Int Edit, 2010, 46: 3675–3679

    Google Scholar 

  20. Pichot F, Gregg BA. The photovoltage-determining mechanism in dye-sensitized solar cells. J Phys Chem B, 2000, 104: 6–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Lan or JiHuai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Z., Wu, J., Lin, J. et al. Controllable hydrothermal synthesis of nanocrystal TiO2 particles and their use in dye-sensitized solar cells. Sci. China Chem. 55, 1308–1313 (2012). https://doi.org/10.1007/s11426-012-4638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4638-2

Keywords

Navigation