Skip to main content
Log in

An efficient and facile synthesis of N-Cbz-β-aminoalkanesulfonamides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient method for the synthesis of N-Cbz-β-aminoalkanesulfonamides was described. N-Cbz-β-aminoalkanesulfona-mides were readily prepared in good yields from a variety of amino alcohols, including optically active ones, via N-Cbz protection with benzyl chloroformate, Mitsunobu esterification reaction with thiolacetic acid, N-chlorosuccinimide oxidation, and ammonolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu JX. Synthesis of hydroxyalkanesulfonic acids, aminoalkan-esulfonic acids and sulfonopeptides. Chin J Org Chem, 2003, 23: 1–9

    Google Scholar 

  2. Moree WJ, van der Marel GA, van Boom JH, Liskamp RMJ. Peptides containing the novel methylphosphinamide transition-state isostere. Tetrahedron, 1993, 49: 11055–11064

    Article  CAS  Google Scholar 

  3. Piscitelli F, Coluccia A, Brancale A, Regina GL, Sansone A, Giordano C, Balzarini J, Maga G, Zanoli S, Samuele A, Cirilli R, Torre FL, Lavecchia A, Novellino E, Silvestri R. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus. J Med Chem, 2009, 52: 1922–1934

    Article  CAS  Google Scholar 

  4. Lowik DWPM, Liskamp RMJ. Synthesis of α- and β-substituted aminoethane sulfonamide arginine-glycine mimics. Eur J Org Chem, 2000: 1219–1228

  5. Hanna NB, Dimitrijevich SD, Larson SB, Robins RK, Revankar GR. Synthesis and single-crystal X-ray diffraction studies of 1-β-d-ribofuranosyl-1,2,4-triazole-3-sulfonamide and certain related nucleosides. J Heterocyclic Chem, 1988, 25: 1857–1868

    Article  CAS  Google Scholar 

  6. Bonina L, Orzalesi G, Merendino R, Arena A, Mastroeni P. Structure-activity relationships of new antiviral compounds. Antimicrob Agents Chemother, 1982, 22: 1067–1069

    Article  CAS  Google Scholar 

  7. Ohnishi H, Yamaguchi K, Shinada S, Himuro S, Suzuki Y. Antiviral activity of sodium 5-aminosulfonyl-2,4-dichlorobenzoate (M12325) Antimicrob Agents Chemother, 1982, 22: 250–254

    Article  CAS  Google Scholar 

  8. Ramasamy K, Imamura N, Hanna NB, Finch RA, Avery TL, Robins RK, Revankar GR. Synthesis and antitumor evaluation in mice of certain 7-deazapurine (pyrrolo[2,3-d]pyrimidine) and 3-deazapurine (imidazo[4,5-c]pyridine) nucleosides structurally related to sulfenosine, sulfinosine, and sulfonosine. J Med Chem, 1990, 33: 1220–1225

    Article  CAS  Google Scholar 

  9. He FD, Meng FH, Song XQ, Hu WX, Xu JX. First and convergent synthesis of hybrid sulfonophosphinopeptides. Org Lett, 2009, 11: 3922–3925

    Article  CAS  Google Scholar 

  10. Meng FH, He FD, Song XQ, Zhang LL, Hu WX, Liu G, Xu JX. Facile synthesis of hybrid sulfonophosphinodipeptides composing of taurines and 1-aminoalkylphosphinic acids. Amino Acids, 2012, online published. (DOI: 10.1007/s00726-011-1098-5)

  11. Moree WJ, van der Marel GA, Liskamp RJ. Synthesis of peptidosulfinamides and peptidosulfonamides: Peptidomimetics containing the sulfinamide or sulfonamide transition-state isostere. J Org Chem, 1995, 60: 5157–5169

    Article  CAS  Google Scholar 

  12. Moree WJ, van der Marel GA, Liskamp RMJ. Synthesis of peptides containing the β-substituted aminoethane sulfinamide or sulfonamide transition-state isostere derived from amino acids. Tetrahedron Lett, 1992, 33: 6389–6392

    Article  CAS  Google Scholar 

  13. de Bont DBA, Moree WJ, Liskamp RMJ. Molecular diversity of peptidomimetics: Approaches to the solid-phase synthesis of peptidosulfonamides. Bioorg Med Chem, 1996, 4: 667–672

    Article  Google Scholar 

  14. Moree WJ, van Gent LC, van der Marel GA, Liskamp RMJ. Synthesis of peptides containing a sulfinamide or a sulfonamide transition-state isostere. Tetrahedron, 1993, 49: 1133–1150

    Article  CAS  Google Scholar 

  15. Moree WJ, van der Marel GA, Liskamp RMJ. Peptides containing a sulfinamide or a sulfonamide moiety: New transition-state analogues Tetrahedron Lett, 1991, 32: 409–412

    Article  CAS  Google Scholar 

  16. Brouwer AJ, Merkx R, Dabrowska K, Rijkers DTS, Liskamp RMJ. Synthesis and applications of β-aminoethanesulfonyl azides. Synthesis, 2006: 455–460

  17. Brouwer AJ, Monnee MCF, Liskamp RMJ. An efficient synthesis of N-protected β-aminoethanesulfonyl chlorides: Versatile building blocks for the synthesis of oligopeptidosulfonamides. Synthesis, 2000: 1579–1584

  18. Gude M, Piarulli U, Potenza D, Salom B, Gennari C. A new method for the solution and solid phase synthesis of chiral β-sulfonopeptides under mild conditions. Tetrahedron Lett, 1996, 37: 8589–8592

    Article  CAS  Google Scholar 

  19. de Bont DBA, Dijkstra GDH, den Hartog JAJ, Liskamp RMJ. Solid-phase synthesis of peptidosulfonamide containing peptides derived from leu-enkephalin. Bioorg Med Chem Lett, 1996, 6: 3035–3040

    Article  Google Scholar 

  20. Luisi G, Calcagni A, Pinnen F. Ψ(SO2-NH) Transition state isosteres of peptides. Synthesis of the glutathione disulfide analogue [Glu-(SO2-NH)-Cys-Gly]2. Tetrahedron Lett, 1993, 34: 2391–2392

    Article  CAS  Google Scholar 

  21. Brouwer AJ, Ceylan T, van der Linden, T, Liskamp, RMJ. Synthesis of β-aminoethanesulfonyl fluorides or 2-substituted taurine sulfonyl fluorides as potential protease inhibitors. Tetrahedron Lett, 2009, 50: 3391–3393

    Article  CAS  Google Scholar 

  22. Rijker DTS, Merkx R, Yim CB, Brouwer AJ, Liskamp RMJ. ’sulfo-click’ for ligation as well as for site-specific conjugation with peptides, fluorophores, and metal chelators. J Pept Sci, 2010, 16: 1–5

    Article  Google Scholar 

  23. Gude M, Piarulli U, Potenza D, Salom B, Gennari C. A new method for the solution and solid phase synthesis of chiral β-sulfonopeptides under mild conditions. Tetrahedron Lett, 1996, 37: 8589–8592

    Article  CAS  Google Scholar 

  24. Crowder MW, Sigdel TK, Golich F, Yang KW. Phosphinate, sulfonate, and sulfonamidate dipeptides as potential inhibitors of Escherichia coli aminopeptidase N. Bioorg Med Chem Lett, 2005, 15: 5150–5153

    Article  Google Scholar 

  25. Carson KG, Schwender CF, Shroff HN, Cochran NA, Gallant DL, Briskin MJ. Sulfonopeptide inhibitors of leukocyte adhesion. Bioorg Med Chem Lett, 1997, 7: 711–714

    Article  CAS  Google Scholar 

  26. Hara T, Durell SR, Myers MC, Appella DH. Probing the structural requirements of peptoids that inhibit HDM2-P53 interactions. J Am Chem Soc, 2006, 128: 1995–2004

    Article  CAS  Google Scholar 

  27. Miller DJ, Surfraz MBU, Akhtar M, Gani D, Allemann RK. Removal of the phosphate group in mechanism-based inhibitors of inositol monophosphatase leads to unusual inhibitory activity. Org Biomol Chem, 2004, 2: 671–688

    Article  CAS  Google Scholar 

  28. Kung CH, Kwon CH. Carbamate derivatives of felbamate as potential anticonvulsant agents. Med Chem Res, 2010, 19: 498–513

    Article  CAS  Google Scholar 

  29. Kumar GDK, Baskaran S. A facile, catalytic, and environmentally benign method for selective deprotection of tert-butyldimethylsilyl ether mediated by phosphomolybdic acid supported on silica gel. J Org Chem, 2005, 70: 4520–4523

    Article  CAS  Google Scholar 

  30. Correa A, Denis JN, Greene AE. A safe, simple, one-pot preparation of N-derivatized β-amino alcohols and oxazolidinones from amino acids. Synth Commun, 1991, 21, 1–9

    Article  CAS  Google Scholar 

  31. Kumar PS, Kumar GDK, Baskaran S. Truly catalytic and chemoselective cleavage of benzylidene acetal with phosphomolybdic acid supported on silica gel. Eur J Org Chem, 2008, 36: 6063–6067

    Article  Google Scholar 

  32. Wang YQ, Yu CB, Wang DW, Wang XB, Zhou YG. Enantioselective synthesis of cyclic sulfamidates via Pd-catalyzed hydrogenation. Org Lett, 2008, 10: 2071–2074

    Article  CAS  Google Scholar 

  33. Denmark SE, Edwards JP, Weber T, Piotrowski DW. Organocerium additions to proline-derived hydrazones: Synthesis of enantiomerically enriched amines. Tetrahedron: Asymmetry, 2010, 21, 1278–1302

    Article  CAS  Google Scholar 

  34. Veitia MS, Brun PL, Jorda P, Falguieres A, Ferroud C. Synthesis of novel N-protected β3-amino nitriles: Study of their hydrolysis involving a nitrilase-catalyzed step. Tetrahedron: Asymmetry, 2009, 20, 2077–2089

    Article  Google Scholar 

  35. Xu JX, Xu S. A general route to the synthesis of N-protected 1-substituted and 1,2-disubstituted taurines. Synthesis, 2004: 276–282

  36. Wang BY, Zhang W, Zhang LL, Du DM, Liu G, Xu JX. Versatile synthesis of free and N-benzyloxycarbonyl-protected 2,2-disub-stituted taurines. Eur J Org Chem, 2008, 2: 350–355

    Article  Google Scholar 

  37. Nishiguchi A, Maeda K, Miki S. Sulfonyl chloride formation from thiol derivatives by N-chlorosuccinimide mediated oxidation. Synthesis, 2006: 4131–4134

  38. Liu J, Hou SL, Xu JX. Diverse reactions of sulfonyl chlorides and cyclic imines. Phosphorus Sulfur Silicon Relat Elem, 2011, 186: 2377–2391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaXi Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, F., Chen, N. & Xu, J. An efficient and facile synthesis of N-Cbz-β-aminoalkanesulfonamides. Sci. China Chem. 55, 2548–2553 (2012). https://doi.org/10.1007/s11426-012-4607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4607-9

Keywords

Navigation