Skip to main content
Log in

Exploring the H-abstraction reactions of CHCl·−/CCl ·−2 with CX3H (X = F, Cl, Br and I) using the density functional theory method

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Gas-phase hydrogen abstraction reactions have been compared using the popular density functional theory (DFT) functional BHandHLYP/aug-cc-pVTZ/RECP level of theory, on the basis of the model reaction CHCl·−/CCl ·−2 + CX3H (X = F, Cl, Br and I). Our theoretical findings suggest the efficiency of the H-abstraction reactions induced by either CHCl·− or CCl ·−2 increases as the substrate is changed from CF3H to CI3H, and that CHCl·− has a higher activity in hydrogen abstraction than CCl ·−2 for a given substrate. The entropy effect at 298 K does not significantly change the trend in reactivity of the various reactions, which is in general controlled by the heights of activation energies ΔE . Therefore, we have explored the origin of the energy barriers ΔE of the reactions using the activation strain model of chemical reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingemann S, Fokkens RH, Nibbering NMM. Gas-phase chemistry of the negative ions derived from azo- and hydrazobenzene. J Org Chem, 1991, 56: 607–612

    Article  CAS  Google Scholar 

  2. McDonald RN, Chowdhury AK, Setser DW. Gas-phase generation of phenylnitrene anion radical-proton affinity and ΔH f 0 of PhN−· and its clustering with ROH molecules. J Am Chem Soc, 1981, 103: 6599–6603

    Article  CAS  Google Scholar 

  3. McDonald RN, Chowdhury AK, McGhee WD. Gas-phase generation of 1,1,1,3,3,3-hexafluoroisopropylidene anion radical: Proton affinity and ΔH f 0 of the anion radical (CF3)2C−·and the carbanion (CF3)2CH−·. J Am Chem Soc, 1984, 106: 4112–4116

    Article  CAS  Google Scholar 

  4. Guo Y, Grabowski JJ. Gas phase ion chemistry of the vinylidene radical anion and the acidity of the vinyl radical. Int J Mass Spectrom Ion Processes, 1990, 97: 253–264

    Article  CAS  Google Scholar 

  5. Matimba HEK, Crabbendam AM, Ingemann S, Nibbering NMM. The gas-phase acidity of the phenyl radical and some C6H4X· (X = F, Cl, CN) radicals. J Chem Soc, Chem Commun, 1991, 644-645

  6. Guo Y, Grabowski JJ. Reactions of the benzyne radical anion in the gas phase, the acidity of the phenyl radical, and the heat of formation of o-benzyne. J Am Chem Soc, 1991, 113: 5923–5931

    Article  CAS  Google Scholar 

  7. Matimba HEK, Crabbendam AM, Ingemann S, Nibbering NMM. Gas-phase bimolecular chemistry of the −·CHNC and −·CHCN radical anions. Int J Mass Spectrom Ion Processes, 1992, 114: 85–97

    Article  CAS  Google Scholar 

  8. Born M, Ingemann S, Nibbering NMM. Heats of formation of monohalo carbenes. Stability and reactivity of CHX−· (X = F, Cl, Br, and I) radical anions. J Am Chem Soc, 1994, 116: 7210–7217

    CAS  Google Scholar 

  9. Born M, Ingemann S, Nibbering NMM. Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase. Int J Mass Spectrom, 2000, 194: 103–113

    Article  CAS  Google Scholar 

  10. Lias SG, Karpas Z, Liebman JF. Halomethylenes: Effects of halogen substitution on absolute heats of formation. J Am Chem Soc, 1985, 107: 6089–6096

    Article  CAS  Google Scholar 

  11. Born M, Ingemann S, Nibbering NMM. Reactivity of mono-halogen carbene radical anions (CHX−·; X = F, Cl and Br) and the corresponding carbanions (CH2X; X = Cl and Br) in the gas phase. J Chem Soc, Perkin Trans 2, 1996, 2537-2547

  12. Villano SM, Eyet N, Lineberger WC, Bierbaum VM. Gas-phase carbene radical anions: New mechanistic insights. J Am Chem Soc, 2008, 130: 7214–7215

    Article  CAS  Google Scholar 

  13. Van Doren JM, Barlow SE, Depuy CH, Bierbaum VM. The tandem flowing afterglow-shift-drift. Int J Mass Spectrom, 1987, 81: 85–100

    Article  Google Scholar 

  14. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  15. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  16. Truong TN, Duncan W. A new direct ab initio dynamics method for calculating thermal rate constants from density functional theory. J Chem Phys, 1994, 101: 7403–7408

    Article  Google Scholar 

  17. Zhang Q, Bell R, Truong TN. Ab initio and density functional theory studies of proton transfer reactions in multiple hydrogen bond systems. J Phys Chem, 1995, 99: 592–599

    Article  CAS  Google Scholar 

  18. Durant JL. Evaluation of transition state properties by density functional theory. Chem Phys Lett, 1996, 256: 595–602

    Article  CAS  Google Scholar 

  19. Lynch BJ, Fast PL, Harris MD, Truhlar G. Adiabatic connection for kinetics. J Phys Chem A, 2000, 104: 4811–4815

    Article  CAS  Google Scholar 

  20. Espinosa-Garcia J. Theoretical study of the trapping of the OOH radical by coenzyme Q. J Am Chem Soc, 2004, 126: 920–927

    Article  CAS  Google Scholar 

  21. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H. Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements. Theor Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  22. Parthiban S, de Oliveira G, Martin JML. Benchmark ab initio energy profiles for the gas-phase SN2 reactions Y + CH3X→CH3Y + X (X, Y = F, Cl, Br). Validation of hybrid DFT methods. J Phys Chem A, 2001, 105: 895–904

    Article  CAS  Google Scholar 

  23. Takahashi M, Tsutsui S, Sakamoto K, Kira M, Muller T, Apeloig Y, Dimers of diaminosilylenes: Doubly bonded or bridged? The dimers of (i-Pr2N)2Si:. J Am Chem Soc, 2001, 123: 347–348

    Article  CAS  Google Scholar 

  24. Fukui K. The path of chemical reactions — The IRC approach. Acc Chem Res, 1981, 14: 363–368

    Article  CAS  Google Scholar 

  25. Pople JA, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys, 1987, 87: 5968–5916

    CAS  Google Scholar 

  26. Reed AE, Weinhold LAF. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  27. Gaussian 03, Revision B. 01. Pittsburgh, PA: Gaussian Inc., 2003

  28. Merciera HPA, Morana MD, Schrobilgena GJ, Suontamo RJ. Energetics of hydride and electron pair attachment to EX3 0/+ (E = B, C, Al, Si and X = F, Cl, Br, I) and the study of bonding trends among EX3 0/+, EX3 2−/−, and EX3H−/0 by use of ELF and NBO analyses. J Fluor Chem, 2004, 125: 1563–1578

    Article  Google Scholar 

  29. Stull DR, Prophet H. JANAF Themochemical Tables: National Standard Reference Data Series. Washington, DC: National Bureau of Standards, 1986

    Google Scholar 

  30. Kuchitsu K. Structure of Free Polyatomic Molecules Basic Data. Sakado: Springer, 1998. 94

    Google Scholar 

  31. Linstrom PJ, Mallard WG. NIST Chemistry Webbook, 1998. http://webbook.nist.gov/chemistry, accessed on 2011-09-20

  32. Allred AL. Electronegativity values from thermochemical data. J Inorg Nucl Chem, 1961, 17: 215–221

    Article  CAS  Google Scholar 

  33. Bent HA. An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem Rev, 1961, 61: 275–311

    Article  CAS  Google Scholar 

  34. Applequist DE, Peterson AH. The configurational stability of cis- and trans-2-methylcyclopropyllithium and some observations on the stereochemistry of their reactions with bromine and carbon dioxide. J Am Chem Soc, 1961, 83: 862–865

    Article  CAS  Google Scholar 

  35. Kapeller D, Barth R, Mereiter K, Hammerschmidt F. Preparation of chiral α-oxy-[2H 1]methyllithiums of 99% ee and determination of their configurational stability. J Am Chem Soc, 2007, 129: 914–923

    Article  CAS  Google Scholar 

  36. Nobe Y, Arayama K, Urabe H. Air-assisted addition of Grignard reagents to olefins. A simple protocol for a three-component coupling process yielding alcohols. J Am Chem Soc, 2005, 127: 18006–18007

    Article  CAS  Google Scholar 

  37. Bierbaum VM, Depuy CH, Shapiro RH. Gas phase reactions of anions with nitrous oxide and carbon dioxide. J Am Chem Soc, 1977, 99: 5800–5802

    Article  CAS  Google Scholar 

  38. Kass SR, Filley JJ, Doren MV, Depuy CH. Nitrous oxide in gas-phase ion-molecule chemistry: A versatile reagent for the determination of carbanion structure. J Am Chem Soc, 1986, 108: 2849–2852

    Article  CAS  Google Scholar 

  39. Gronert S. Theoretical studies of elimination reactions. 3. Gas-phase reactions of F-with (CH3)2CHCl and CH3CH2CH2Cl. The effect of methyl substituents. J Am Chem Soc, 1993, 115: 652–659

    Article  CAS  Google Scholar 

  40. McKee ML. Computational comparison of SN2 substitution reactionsof CHX·− and CH2X-with CH3X (X = Cl, Br). Do open-shell and closed-shell anions react differently? J Org Chem, 1997, 62: 7942–1949

    Article  CAS  Google Scholar 

  41. Su MD, Chu SY. Reactivity of the C-X (X = F, Cl, Br, and I) bond activation in CX4 by an iridium(I) complex from a theoretical viewpoint. J Am Chem Soc, 1999, 121: 1045–1058

    Article  CAS  Google Scholar 

  42. Diefenbach A, Bickelhaupt FM. Activation of H-H, C-H, C-C, and C-Cl Bonds by Pd(0). Insight from the activation strain model. J Phys Chem A, 2004, 108: 8460–8466

    Article  CAS  Google Scholar 

  43. Hammond GS. A correlation of reaction rates. J Am Chem Soc, 1955, 77: 334–338

    Article  CAS  Google Scholar 

  44. Keeffe JR, Gronert S, Colvin ME, Tran NL. Identity proton-transfer reactions from C-H, N-H, and O-H Acids. An ab initio, DFT, and CPCM-B3LYP aqueous solvent model study. J Am Chem Soc, 2003, 125: 11730–11745

    Article  CAS  Google Scholar 

  45. Lee I, Kim CK, Lee BS. Theoretical studies of the identity allyl transfer reactions. J Phys Org Chem, 1995, 8: 473–483

    Article  CAS  Google Scholar 

  46. Pierrefixe SCAH, Guerra CF, Bickelhaupt FM. Hypervalent silicon versus carbon: Ball-in-a-box model. Chem Eur J, 2008, 14: 819–828

    Article  Google Scholar 

  47. Pierrefixe SCAH, Poater J, Im C, Bickelhaupt FM. Hypervalent versus nonhypervalent carbon in noble-gas complexes. Chem Eur, J 2008, 14: 6901–6911

    Article  CAS  Google Scholar 

  48. Pierrefixe SCAH, Bickelhaupt FM. Hypervalence and the delocalizing versus localizing propensities of H 3 , Li 3 , CH 5 and SiH 5 . Struct Chem, 2007, 18: 813–819

    Article  CAS  Google Scholar 

  49. Su MD, Chu SY. Density functional study of some germylene insertion reactions. J Am Chem Soc, 1999, 121: 4229–4237

    Article  CAS  Google Scholar 

  50. Su MD, Chu SY. Theoretical studies of the insertions of germylene into methane. Tetrahedron Lett, 1999, 40: 4371–4374

    Article  CAS  Google Scholar 

  51. Bento AP, Bickelhaupt FM. Nucleophilicity and leaving-group ability in frontside and backside SN2 reactions. J Org Chem, 2008, 73: 7290–7299

    Article  CAS  Google Scholar 

  52. Blowers P, Ford L, Masel R. Ab initio calculations of the reactions of hydrogen with methanol: A comparison of the role of bond distortions and Pauli repulsions on the intrinsic barriers for chemical reactions. J Phys Chem A, 1998, 102: 9267–9277

    Article  CAS  Google Scholar 

  53. Diefenbach A, Bickelhaupt FM. Oxidative addition of Pd to C-H, C-C and C-Cl bonds: Importance of relativistic effects in DFT calculations. J Chem Phys, 2001, 115: 4030–4040

    Article  CAS  Google Scholar 

  54. Diefenbach A, de Jong GT, Bickelhaupt FM. Activation of H-H, C-H, C-C and C-Cl bonds by Pd and PdCl. Understanding anion assistance in C-X bond activation. J Chem Theory Comput, 2005, 1: 286–298

    Article  CAS  Google Scholar 

  55. de Jong GT, Bickelhaupt FM. Catalytic carbon-halogen bond activation: Trends in reactivity, selectivity, and solvation. J Chem Theory Comput, 2007, 3: 514–529

    Article  Google Scholar 

  56. Moss RA, Fedorynski M, Shieh WC. Unification of the carbenic selectivity spectrum. The ambiphilicity of methoxychlorocarbene. J Am Chem Soc, 1979, 101: 4736–4738

    Article  CAS  Google Scholar 

  57. Smith NP, Stevens IDR. Formation and reactions of chloro-methoxy- and -(2-methylpropoxy)-carbene. J Chem Soc, Perkin Trans 2, 1979, 1298–1308

  58. Moss RA. Carbenic selectivity in cyclopropanation reactions. Acc Chem Res, 1980, 13: 58–64

    Article  CAS  Google Scholar 

  59. Jones WM, LaBar RA, Brinker UH, Gebert PH. Generation and properties of 4,9- and 3,8-methano annulenylidenes. J Am Chem Soc, 1977, 99: 6379–6391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunXi Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Wang, Y. & Geng, Z. Exploring the H-abstraction reactions of CHCl·−/CCl ·−2 with CX3H (X = F, Cl, Br and I) using the density functional theory method. Sci. China Chem. 55, 1384–1394 (2012). https://doi.org/10.1007/s11426-012-4596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4596-8

Keywords

Navigation