Skip to main content
Log in

Controlled/living ring-opening polymerization of ɛ-caprolactone catalyzed by phosphoric acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The bulk ring-opening polymerization (ROP) of ɛ-caprolactone (ɛ-CL) by various phosphoric acids using phenylmethanol as the initiator was conducted. 1,1′-bi-2-Naphthol (BINOL)-based phosphoric acid was found to be an effective organocatalyst for ROP leading to polyesters at 90°C. The overall conversion to poly(ɛ-caprolactone) was more than 96% and poly(ɛ-caprolactone) with M w of 8400 and polydispersity index of 1.13 was obtained. 1H NMR spectra of oligomers demonstrated the quantitative incorporation of the protic initiator in the polymer chains and showed that transesterification reactions did not occur to a significant extent. The controlled polymerization was indicated by the linear relationships between the number-average molar mass and monomer conversion or monomer-to-initiator ratio. In addition, the present protocol provided an easy-to-handle, inexpensive and environmentally benign entry for the synthesis of biodegradable materials as well as polyesters for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vion JM, Jerome R, Teyssié P, Aubin M, Pruďhomme RE. Synthesis, characterization, and miscibility of caprolactone random copolymers. Macromolecules, 1986, 19: 1828–1838

    Article  CAS  Google Scholar 

  2. Chielleni E, Solaro R. Biodegradable polymeric materials. Adv Mater, 1996, 8: 305–313

    Article  Google Scholar 

  3. Fujisato T, Ikada Y. New cartilage formation in vivo using chondrocytes seeded on poly(L-lactide). Macromol Symp, 1996, 103: 73–83

    CAS  Google Scholar 

  4. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater, 2000, 12: 1841–1846

    Article  CAS  Google Scholar 

  5. Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003, 4: 1466–1486

    Article  CAS  Google Scholar 

  6. Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev, 2004, 104: 6147–6176

    Article  CAS  Google Scholar 

  7. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL. Organocatalytic ring-opening polymerization. Chem Rev, 2007, 107: 5813–5840

    Article  CAS  Google Scholar 

  8. Dove AP. Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem Commun, 2008, 6446–6470

  9. Dubois P, Coulembier O, Raquez JM, Eds. Handbook of Ring-Opening Polymerization. Weinheim: Wiley-VCH, 2009

    Google Scholar 

  10. Domínguez de María P. Minimal hydrolases: Organocatalytic ring-opening polymerizations catalyzed by naturally occurring carboxylic acids. ChemCatChem, 2010, 2: 487–492

    Article  Google Scholar 

  11. Gross RA, Kumar A, Kalra B. Polymer synthesis by in vitro enzyme catalysis. Chem Rev, 2001, 101: 2097–2124

    Article  CAS  Google Scholar 

  12. Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL. New paradigms for organic catalysts: The first organocatalytic living polymerization. Angew Chem Int Ed, 2001, 40: 2712–2715

    Article  CAS  Google Scholar 

  13. Connor EF, Nyce GW, Myers M, Mock A, Hedrick JL. First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc, 2002, 124: 914–915

    Article  CAS  Google Scholar 

  14. Coulembier O, Lohmeijer BGG, Dove AP, Pratt RC, Mespouille L, Culkin DA, Benight SJ, Dubois P, Waymouth RM, Hedrick JL. Alcohol Adducts of N-heterocyclic carbenes: Latent catalysts of the thermally-controlled living polymerization of cyclic esters. Macromolecules, 2006, 39: 5617–5628

    Article  CAS  Google Scholar 

  15. Jeong W, Hedrick JL, Waymouth RM. Organic spirocyclic initiators for the ring-expansion polymerization of β-lactones. J Am Chem Soc, 2007, 129: 8414–8415

    Article  CAS  Google Scholar 

  16. Kamber NE, Jeong W, Gonzalez S, Hedrick JL, Waymouth RM. N-Heterocyclic carbenes for the organocatalytic ring-opening polymerization of ɛ-caprolactone. Macromolecules, 2009, 42: 1634–1639

    Article  CAS  Google Scholar 

  17. Myers M, Connor EF, Glauser T, Mock A, Nyce G, Hedrick JL. Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J Polym Sci Polym Chem Ed, 2002, 40: 844–851

    Article  CAS  Google Scholar 

  18. Coulembier O, Sanders DP, Nelson A, Hollenbeck AN, Horn HW, Rice JE, Fujiwara M, Dubois P, Hedrick JL. Hydrogen-bonding catalysts based on fluorinated alcohol derivatives for living polymerization. Angew Chem Int Ed, 2009, 48: 5170–5173

    Article  CAS  Google Scholar 

  19. Kricheldorf HR, Kreiser I. Polylactones, 11. Cationic copolymerization of glycolide with L,L-dilactide. Makromol Chem, 1987, 188: 1861–1873

    Article  CAS  Google Scholar 

  20. Sanda F, Sanada H, Shibasaki Y, Endo T. Star polymer synthesis from ɛ-caprolactone utilizing polyol/protonic acid initiator. Macromolecules, 2002, 35: 680–683

    Article  CAS  Google Scholar 

  21. Lou X, Detrembleur C, JérΩe R. Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules, 2002, 35: 1190–1195

    Article  CAS  Google Scholar 

  22. Persson PV, Schröer J, Wickholm K, Hedenström E, Iversen T. Selective organocatalytic ring-opening polymerization: A versatile route to carbohydrate-functionalized poly(ɛ-caprolactones). Macromolecules, 2004, 37: 5889–5893

    Article  CAS  Google Scholar 

  23. Gazeau-Bureau S, Delcroix D, Martin-Vaca B, Bourissou D, Navarro C, Magnet S. Organo-catalyzed ring-opening of ɛ-caprolactone: Methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules, 2008, 41: 3782–3784

    Article  CAS  Google Scholar 

  24. Makiguchi K, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ɛ-caprolactone. Macromolecules, 2011, 44: 1999–2005

    Article  CAS  Google Scholar 

  25. Oledzka E, Narine SS. Organic acids catalyzed polymerization of ɛ-caprolactone: Synthesis and characterization. J Appl Polym Sci, 2011, 119: 1873–1882

    Article  CAS  Google Scholar 

  26. Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F. Controlled cationic polymerization of lactide. Macromolecules, 2005, 38: 9993–9998

    Article  CAS  Google Scholar 

  27. Kakuchi R, Tsuji Y, Chiba K, Fuchise K, Sakai R, Satoh T, Kakuchi T. Controlled/living ring-opening polymerization of δ-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules, 2010, 43: 7090–7094

    Article  CAS  Google Scholar 

  28. Koeller S, Kadota J, Peruch F, Deffieux A, Pinaud N, Pianet I, Massip S, Léger JM, Desvergn JP. (Thio)amidoindoles and (thio)amidobenzimidazoles: An investigation of their hydrogen-onding and organocatalytic properties in the ring-opening polymerization of lactide. Chem Eur J, 2010, 16: 4196–4205

    Article  CAS  Google Scholar 

  29. Zhang L, Nederberg F, Messman JM, Pratt RC, Hedrick JL, Wade CG. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J Am Chem Soc, 2007, 129: 12610–12611

    Article  CAS  Google Scholar 

  30. Zhang L, Nederberg F, Pratt RC, Waymouth RM, Hedrick JL, Wade CG. Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules, 2007, 40: 4154–4158

    Article  CAS  Google Scholar 

  31. Lohmeijer BGG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, Nederberg F, Choi J, Wade CG, Waymouth RM, Hedrick JL. Guanidine and amidine organocatalysts for ring-opening polymerizion of cyclic esters. Macromolecules, 2006, 39: 8574–8583

    Article  CAS  Google Scholar 

  32. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc, 2006, 128: 4556–4557

    Article  CAS  Google Scholar 

  33. Sun X, Gao JP, Wang ZY. Bicyclic Guanidinium tetraphenylborate: A photobase generator and a photocatalyst for living anionic ring-opening polymerization and cross-linking of polymeric materials containing ester and hydroxy groups. J Am Chem Soc, 2008, 130: 8130–8131

    Article  CAS  Google Scholar 

  34. Dove AP, Pratt RC, Lohmeijer BGG, Waymouth RM, Hedrick JL. Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization. J Am Chem Soc, 2005, 127: 13798–13799

    Article  CAS  Google Scholar 

  35. Pratt RC, Lohmeijer BGG, Long DA, Lundberg PNP, Dove AP, Li H, Wade CG, Waymouth RM, Hedrick JL. Exploration, Optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co) polymers. Macromolecules, 2006, 39: 7863–7871

    Article  CAS  Google Scholar 

  36. Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE. The reaction mechanism for the organocatalytic ring-opening polymerization of L-lactide using a guanidine-based catalyst: Hydrogen-bonded or covalently bound. J Am Chem Soc, 2008, 130: 6749–6754

    Article  CAS  Google Scholar 

  37. Becker JM, Tempelaar S, Stanford MJ, Pounder RJ, Covington JA, Dove AP. Development of amino-oxazoline and amino-thiazoline organic catalysts for the ring-opening polymerization of lactide. Chem Eur J, 2010, 16: 6099–6105

    CAS  Google Scholar 

  38. Yamanaka M, Itoh J, Fuchibe K, Akiyama, T. Chiral Brønsted acid catalyzed enantioselective Mannich-type reaction. J Am Chem Soc, 2007, 129: 6756–6764

    Article  CAS  Google Scholar 

  39. Sakakura A, Sakuma M, Katsukawa M, Ishihara K. Selective synthesis of cyclic phosphoric acid diesters through oxorhenium(VII)-catalyzed dehydrative condensation of phosphoric acid with alcohols. Heterocycles, 2008, 76: 657–665

    Article  CAS  Google Scholar 

  40. Sutherland JD, Weaver GW. Synthesis of bis(glycoaldehyde) phosphodiester and mixed glycoaldehyde-triose phosphodiesters. Tetrahedron Lett, 1994, 35: 9109–9112

    Article  CAS  Google Scholar 

  41. Jankowska J, Stawiński J. A facile synthesis of cyclic phosphodiesters. Synthesis, 1984, 408-410

  42. Cremlyn R, Ruddock K, Obisesan O. Derivatives of cyclohexane-1,2-diol-phosphorochloridate and 1-chlor-4,5-benz-2,6-dioxa-phosphorinanone-(3)-1-oxide. Phosph Sulf, 1981, 10: 333–338

    Article  CAS  Google Scholar 

  43. Penczek S, Kubisa P, Szymanski R. One the diagnostic criteria of the livingness of polymerizations. Makromol Chem Rapid Commun, 1991, 12: 77–80

    Article  CAS  Google Scholar 

  44. Simón L, Goodman JM. Theoretical study of the mechanism of Hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. J Am Chem Soc, 2008, 130: 8741–8747

    Article  Google Scholar 

  45. Li N, Chen XH, Song J, Luo SW, Fan W, Gong LZ. Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: Reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids. J Am Chem Soc, 2009, 131: 15301–15310

    Article  CAS  Google Scholar 

  46. Susperregui N, Delcroix D, Martin-Vaca B, Bourissou D, Maron L. Ring-opening polymerization of ɛ-caprolactone catalyzed by sulfonic acids: Computational evidence for bifunctional activation. J Org Chem, 2010, 75: 6581–6587

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Xu, R. & Li, B. Controlled/living ring-opening polymerization of ɛ-caprolactone catalyzed by phosphoric acid. Sci. China Chem. 55, 1257–1262 (2012). https://doi.org/10.1007/s11426-012-4586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4586-x

Keywords

Navigation