Skip to main content
Log in

Molecular-based conducting magnet

  • Reviews
  • Special Topic · Molecular Magnetism
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Molecular-based conducting magnet or magnetic conductor, is an overlap of organic conductor and molecular magnet. Due to the existence of ferromagnetism, antiferromagnetism and quantum magnetism in insulated charge-transfer salt, it becomes a common sense that magnetism is not good for conductivity. After the discovery of first molecular-based metallic ferromagnet, molecular-based conducting magnet with π-unit from organic conductor and magnetism from coordination counterion became a hot area. The metallic ferromagnet, semiconductor room-temperature ferrimagnet, metallic weak ferromagnet and superconducting antiferromagnet have been discovered. The new molecular-based conducting magnet with higher conductivity and higher magnetic ordering temperature is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiki, “magnet”

  2. Singleton J. Why do physicists love charge-transfer salts? J Solid State Commun, 2001, 168: 675–689

    Google Scholar 

  3. Palacio F, Miller JS. A dual-action material. Nature, 2000, 408: 421–422

    Article  CAS  Google Scholar 

  4. Coronado E, Day P. Magnetic molecular conductors. Chem Rev, 2004, 104: 5419–5448

    Article  CAS  Google Scholar 

  5. Cassoux P. A molecular paramagnetic superconductor. Science, 1997, 272: 1277–1278

    Article  Google Scholar 

  6. See, The super century. Nat Mater, 2011, 10: 253–263

  7. Watanabe T, Yanai H, Kamiya T, Kamihara Y, Hisamatsu H, Hirano M, Hosono H. Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. Inorg Chem, 2007, 46: 7719–7721

    Article  CAS  Google Scholar 

  8. Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H. Iron-based layered superconductor: LaOFeP. J Am Chem Soc, 2006, 128: 10012–10013

    Article  CAS  Google Scholar 

  9. Kamihara Y, Watanabe T, Hirano M, Hosono H. Iron-based layered superconductor La[O1−x Fx]FeAs (x = 0.05 − 0.12) with T c = 26 K. J Am Chem Soc, 2008, 130: 3296–3297

    Article  CAS  Google Scholar 

  10. Hanna T, Muraba Y, Matsuishi S, Igawa N, Kodama K, Shamoto S, Hosono H. Superconductivity and fluctuating magnetism in quasi-two-dimensional κ-(BEDT-TTF)2Cu[N(CN)2]Br probed with implanted muons. Phy Rev B, 2011, 83: 024521

    Article  Google Scholar 

  11. Lehn JM. Supramolecular Chemistry. Wiely-VCH, 1995

  12. Akamatu H, Inokuchi H, Matsunaga Y. Electrical conductivity of the perylene-bromine complex. Nature, 1954, 193: 168–169

    Article  Google Scholar 

  13. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun, 1977, 578-580

  14. Ferraris J, Cowan DO, Waltka W, Peristein JH. Electron transfer in a new highly conducting donor-acceptor complex. J Am Chem Soc, 1973, 95: 948–949

    Article  CAS  Google Scholar 

  15. Jerome D, Mazaud A, Ribault M, Bechgaards K. Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J Physique Lett, 1980, 41: L95–L98

    Article  Google Scholar 

  16. Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang HH, Kini AM, Whangbo M. Organic Superconductors (Including Fullerenes). Englewood Cliffs: Prentice Hall Inc., 1992

    Google Scholar 

  17. Taniguchi H, Miyashita M, Uchiyama K, Satoh K, Mori N, Okamoto H, Miyagawa K, Kanoda K, Hedo M, Uwatoko Y. Superconductivity at 14.2 K in layered organics under extreme pressure. J Phy Soc Jpn, 2003, 72: 468–471

    Article  CAS  Google Scholar 

  18. Takayashi Y, Ganin AY, Jeglic P, Arcon D, Takano T, Iwasa Y, Ohishi Y, Takata M, Takeshita N, Prassides K, Rosseinsky MJ. The disorder-free non-BCS superconductor Cs3C60 emerges from an antiferromagnetic insulator parent state. Science, 2009, 323: 1585–1590

    Article  Google Scholar 

  19. Mizuno M, Garito AF, Cava MP. “Organic metals”: Alkylthio substitution effects in tetrathiafulvalene-tetracyanoquinodimethane charge -transfer complexes. J Chem Soc, Chem Commun, 1978, 18–19

  20. Williams JM. Highly conducting and superconducting synthetic metals. Inorg Synth, 1989, 26: 386–390

    Article  CAS  Google Scholar 

  21. Yu HB, Zhang B, Zhu DB, New organic charge transfer salts (ET)4(FeCl4)2 and (ET)FeCl4: Preparation, structure, XP spectra and electrical properties. J Mater Chem, 1998, 8: 77–80

    Article  CAS  Google Scholar 

  22. Zhang B, Wang ZM, Fujiwara H, Kobayashi H, Kurmoo M, Inoue K, Mori T, Gao S, Zhang Y, Zhu DB. Tetrathiafulvalene [FeIII(C2O4)Cl2 ]: An organic-inorganic hybrid exhibiting canted antiferromagnetism. Adv Mater, 1995, 17: 1988–1991

    Article  Google Scholar 

  23. Wang HH, Williams JM. Ambient-pressure superconducing synthetic metals β-(BEDT-TTF)2X, X = I 3 , IBr 2 , and AuI 2 . Inorg Synth, 1992, 29: 41–50

    Article  CAS  Google Scholar 

  24. Zhang B, Yao YX, Zhu DB. A new organic conductor (BEDT-TTF)5Cl3(H2O)5. Synth Met, 2001, 120: 671–674

    Article  CAS  Google Scholar 

  25. Zhang B, Kurmoo M, Mori T, Zhang Y. Pratt, FL, Zhu DB, Polymorphism in hybrid organic-inorganic bilayered magnetic conductors (BEDT-TTF)3(FeIIICl4)2, BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene. Cryst Growth Des, 2010, 10: 782–789

    Article  CAS  Google Scholar 

  26. Mallah T, Hollis C, Bott S, Kurmoo M, Day P. Crystal structures and physical properties of bis(ethylenedithi0)-tetrathiafulvalene chargetransfer salts with FeX4 (X = CI or Br) anions. J Chem Soc, Dalton Trans, 1990, 859–865

  27. BEDT-TTF(FeCl4)2, cell parameter: a = 6.2080(7) Å, b = 11.0048(3) Å, c = 19.3051(14) Å, β = 92.918(2)°, V = 1317.2(2) Å3, Z = 2, P21/n

  28. Miyagawa K, Kanoda K, Kawamoto A. NMR studies on two-dimensional molecular conductors and superconductors: Mott transition in κ-(BEDT-TTF)2X. Chem Rev, 2004, 104: 5635–5653

    Article  CAS  Google Scholar 

  29. Geiser U, Wang HH, Donega KM, Anderson BA, Williams JM, Kwak JF. Synthesis, electrical properties, and crystal structure of the first organic metal-solid electrolyte hybrid: (BEDT-TTF)3AgxI8 (x.apprx. 6.4). Inorg Chem, 1986, 25: 402–403

    Article  Google Scholar 

  30. Zhang B, Zhang Y, Zhu DB. (BEDT-TTF)3Cu2(C2O4)3(CH3OH)2: An organic-inorganic hybrid antiferromagnetic semiconductor. Chem Commun, 2012, 48: 197–199

    Article  CAS  Google Scholar 

  31. Graham AW, Kurmoo, M, Day P. β″-(bedt-ttf)4[(H20) Fe(C204)3].PhCN: the first molecular superconductor containing paramagnetic metal ions. J Chem Soc, Chem Commun, 1995, 2061–2062

  32. Coronado E, Curreli S, Gimenez-Saiz C, Gomez-Garcia CJ. A novel paramagnetic molecular superconductor formed by bis (ethylenedithio)tetrathiafulvalene, tris(oxalato)ferrate(III) anions and bromobenzene as guest molecule: ET4[(H3O)Fe(C2O4)3]·C6H5Br. J Mater Chem, 2005, 15: 1429–1436

    Article  CAS  Google Scholar 

  33. Guionneau P, Kepert CJ, Bravic G, Chasseau D, Truter MR, Kurmoo M, Day P. Determining the charge distribution in BEDT-TTF salts. Synth Metal, 1997, 86: 1973–1974

    Article  CAS  Google Scholar 

  34. Wang HH, Ferraro JR, Williams JM, Geiser U, Schlueter JA. Rapid raman spectroscopic determination of the stoichiometry of microscopic quantities of BEDT-ITF-based organic conductors and superconductors. J Chem Soc, Chem Commun, 1994, 1893–1894

  35. Coulon C, Clerac R. Electron spin resonance: A major probe for molecular conductors. Chem Rev, 2004, 104: 5655–5687

    Article  CAS  Google Scholar 

  36. Seo H, Hotta C, Fukuyama H. Toward systematic understanding of diversity of electronic properties in low-dimensional molecular solids. Chem Rev, 2004, 104: 5005–5036

    Article  CAS  Google Scholar 

  37. Lefebvre S, Wzietek P, Brown S, Bourbonnais C, Jerome D, Mezicre C, Fourimigue M, Batail P. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors. Phys Rev Lett, 2000, 85: 5420–5423

    Article  CAS  Google Scholar 

  38. Coomber AT, Beljonne D, Friend RH, Bredas JL, Charlton A, Robertson N, Underhill AE, Kurmoo M, Day P. Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2·H2O. Nature, 1996, 380: 144–146

    Article  CAS  Google Scholar 

  39. Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G. Spin liquid state in an organic mott insulator with a triangular lattice. Phy Rev Lett, 2003, 91: 107001

    Article  CAS  Google Scholar 

  40. Yamashita S, Nakazawa Y, Oguni M, OShima Y, Nojiri H, Shimizu Y, Miyagawa K, Kanoda K. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat Phys, 2008, 4: 459–462

    Article  CAS  Google Scholar 

  41. Yamashita M, Nakata N, Senshu Y, Nagata M, Yamamoto HM, Kato R, Shibauchi T, Matsuda Y. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science, 2010, 328: 1246–1248

    Article  CAS  Google Scholar 

  42. Pratt FL, Baker PJ, Blundell SJ, Lancaster T, Ohira-Kawamura S, Baines C, Shimatzu Y, Kanoda K, Watanabe I, Saito G. Magnetic and non-magnetic phases of a quantum spin liquid. Nature, 2011, 471: 612–616

    Article  CAS  Google Scholar 

  43. Bonniface DW, Braithwaite MJ, Eley DD, Evans RG, Pethig R, Willis MR. Factors affecting conduction in polymeric complex TCNQ salts. Discussions of the Faraday Society, 1971, 51: 131–138

    Article  Google Scholar 

  44. Manriquez JM, Yee GT, McLean RS, Epstein AJ, Miller JS. A room-temperature molecular/organic-based magnet. Science, 1991, 252: 1415–1417

    Article  CAS  Google Scholar 

  45. Carlegrim E, Kancirurzewska A, Nordblad P, Fahlman M. Air-stable organic-based semiconducting room temperature thin film magnet for spintronics applications. Appl Phy Lett, 2008, 92: 163308

    Article  Google Scholar 

  46. Lopez N, Zhao H. Ota A, Prosvirin AV, Reinheimer EW, Dunbar KR. Unprecedented binary semiconductors based on TCNQ: Singlecrystal x-ray studies and physical properties of Cu(TCNQX2) X = Cl, Br. Adv Mater, 2010, 22: 986–989

    Article  CAS  Google Scholar 

  47. Chifotides HT, Schottel BL, Dunbar KR. The π-Accepting arene HAT(CN)6 as a halide receptor through charge transfer: Multisite anion interactions and self-assembly in solution and the solid state. Angew Chem Int Ed, 2010, 49: 7202–7207

    Article  CAS  Google Scholar 

  48. Miyasaka H, Motokawa N, Matsunaga S, Yamashita M, Sugimoto K, Mori T, Toyota N, Dunbar KR. Control of charge transfer in a series of Ru2 II,II/TCNQ two-dimensional networks by tuning the electron affinity of TCNQ units: A route to synergistic magnetic/conducting materials. J Am Chem Soc, 2010, 132: 1532–1544

    Article  CAS  Google Scholar 

  49. Edwards PR, Johnson CE. Mössbauer hyperfine interactions in tetrahedal Fe(III) ions. J Chem Phys, 1968, 49: 211–216

    Article  CAS  Google Scholar 

  50. Tamaki H, Zhong ZJ, Matsumoto N, Kida S, Koikawa M, Achiwa N, Hashimoto Y, Okawa H. Design of metal-complex magnets. Syntheses and magnetic properties of mixed-metal assemblies {NBu4[MCr( OX)3]]}x ( NBu4 + = Tetra(n-buty1) ammonium ion; ox2− = oxalate ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). J Am Chem Soc, 1992, 114: 6974–6979

    Article  CAS  Google Scholar 

  51. Wang XY, Wang ZM, Gao S. Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chem Commun, 2008, 281–294

  52. Day P, Kurmoo M, Mallah T, Marsden IR, Friend RH, Pratt FL, Hayes W, Chasseau D, Gaultier J, Bravic G, Ducasse L. Structure and properties of tris[bis(ethylenedithio)tetrathiafulvalenium]te trachlorocopper( II ) hydrate, (BEDT-TTF)3CuC14·H2O: First evidence for coexistence of localized and conduction electrons in a metallic charge-transfer salt. J Am Chem Soc, 1992, 114: 10722–10729

    Article  CAS  Google Scholar 

  53. Kobayashi H, Tomita H, Naito T, Kobayashi A, Sakai F, Watanabe T, Cassoux P. New BETS conductors with magnetic anions (BETS) = bis(ethylenedithio)tetraselenafulvalene). J Am Chem Soc, 1996, 118: 369–377

    Google Scholar 

  54. Uji S, Shinagawa H, Terashima T, Yakabe T, Terai Y, Tokumoto M, Kobayashi A, Tanaka H, Kobayashi H. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature, 2001, 410: 908–910

    Article  CAS  Google Scholar 

  55. Kobayashi H, Cui HB, Kobayashi A. Organic metals and superconductors based on BETS (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem Rev, 2004, 104: 5265–5288

    Article  CAS  Google Scholar 

  56. Coronado E, Galan-Mascaros J, Gomez-Garcia CJ, Laukhin V. Coexistence of ferromagnetism and metallic conductivity in a moleculebased layered compound. Nature, 2000, 408: 447–449

    Article  CAS  Google Scholar 

  57. Zhang B, Wang ZM, Zhang Y, Takahashi K, Okano Y, Cui HB, Kobayashi H, Inoue K, Kurmoo M, Pratt FL, Zhu DB. Hybrid organic-inorganic conductor with a magnetic chain anion: κ-BETS2[FeIII(C2O4)Cl2 ] [BETS = bis(ethylenedithio)tetraselenafulvalene]. Inorg Chem, 2006, 45: 3275–3280

    Article  CAS  Google Scholar 

  58. Zhang B, Pratt FL, Kurmoo M, Okano Y, Kobayashi H, Zhu DB. A hybrid organic-inorganic conductor κ′-BETS2FeCl4, BETS = bis(ethylenedithio)tetraselenafulvalene). Crys Growth Design, 2007, 7: 2548–2552

    Article  CAS  Google Scholar 

  59. Xu HB, Liu T, Wang ZM, Gao S. Synthesis, structure, and magnetic properties of (A)[FeIII(oxalate)Cl2] (A = alkyl ammonium cations) with anionic 1D [FeIII(oxalate)Cl2] chains. Inorg Chem, 2007, 46: 3089–3096

    Article  CAS  Google Scholar 

  60. Hiraga H, Miyasaka H, Clerac R, Fourmigue M, Yamashita M. MIII(dmit)2]-coordinated MnIII salen-type dimers (MIII = NiIII, AuIII; dmit2− = 1,3-dithiol-2-thione-4,5-dithiolate): Design of single-component conducting single-molecule magnet-based materials. Inorg Chem, 2009, 48: 2887–2898

    Article  CAS  Google Scholar 

  61. Takahashi K, Cui HB, Okano Y, Kobayashi H, Mori H, Tajima H, Einaga Y, Sato O. Evidence of the chemical uniaxial strain effect on electrical conductivity in the spin-crossover conducting molecular system: [FeIII(qnal)2][Pd(dmit)2]5· acetone. J Am Chem Soc, 2008, 130: 6688–6689

    Article  CAS  Google Scholar 

  62. Djukic B, Lemaire M. Hybrid spin-crossover conductor exhibiting unusual variable-temperature electrical conductivity. Inorg Chem, 2009, 48: 10489–10491

    Article  CAS  Google Scholar 

  63. Tanaka H, Okano Y, Kobayashi H, Suzuki W, Kobayashi A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science, 2001, 291: 285–287

    Article  CAS  Google Scholar 

  64. Zhou B, Shimamura M, Fujiwara H, Kobayashi A, Higashi T, Nishibori E, Sakata M, Cui HB, Takahashi K, Kobayashi H. Magnetic transitions of single-component molecular metal [Au(tmdt)2] and its alloy systems. J Am Chem Soc, 2006, 128: 3872–3873

    Article  CAS  Google Scholar 

  65. Zhou B, Kobayashi A, Okano Y, Cui HB, Graf D, Brooks JS, Nakashima T, Aoyagi S, Nishibori E, Sakata M. Structural anomalies associated with antiferromagnetic transition of single-component molecular metal [Au(tmdt)2]. Inorg Chem, 2009, 48: 10151–10157

    Article  CAS  Google Scholar 

  66. Jia CY, Liu SX, Ambrus C, Neels A, Labat G, Decurtins S. One-dimensional µ-chloromanganese(II)-tetrathiafulvalene (TTF) coordination compound. Inorg Chem, 2006, 45: 3152–3154

    Article  CAS  Google Scholar 

  67. Ya C, Li C, Wang C, Wu D, Zuo J, You X. Synthesis, structure and physical properties of the one-dimensional chain complex of tetrathiafulvalene carboxylate. Sci China Ser B-Chem, 2009, 52: 1596–1601

    Article  Google Scholar 

  68. McKenzie RH. Similarities between organic and cuprate superconductors. Science, 1997, 278: 820–821

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or DaoBen Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Zhu, D. Molecular-based conducting magnet. Sci. China Chem. 55, 883–892 (2012). https://doi.org/10.1007/s11426-012-4568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4568-z

Keywords

Navigation