Skip to main content
Log in

A self-assembled (H2O)20(CH3OH)4 binary cluster containing a grail-shaped hexadecameric water cluster trapped in the cavity of a metal-ligand hybrid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A discrete centrosymmetric (H2O)20(CH3OH)4 binary cluster was confined in the cavity of a metal-ligand hybrid [Ag4(bpda)2(bpp)4·14H2O·2CH3OH] n (1) (where bpp = 1,3-bis(4-pyridyl)propane and H2bpda = 2,2′-biphenyldicarboxylic acid). The novel mixed water-methanol cluster consists of one grail-shaped hexadecameric cluster, four dangling water and four hanging methanol molecules. The (H2O)16 cluster is composed of two pairs of edge-sharing (H2O)5 rings attached to one (H2O)4 core with twenty hydrogen bonds. Alternatively, the (H2O)16 cluster is structurally similar to a complicated hydrocarbon generated by undergoing [2+2] cycloaddition of 1,2,3,4,5,6-hexahydropentalene, which reveals the resemblance between water clusters and organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenberg D, Kauzmann W. The Structure and Properties of Water. Oxford: Oxford University Press, 1969

    Google Scholar 

  2. Silverstein KAT, Haymet ADJ, Dill KA. A simple model of water and the hydrophobic effect. J Am Chem Soc, 1998, 120: 3166–3175

    Article  CAS  Google Scholar 

  3. Janiak C, Scharmann TG, Mason SA. Two-dimensional water and ice layers: Neutron diffraction studies at 278, 263, and 20 K. J Am Chem Soc, 2002, 124: 14010–14011

    Article  CAS  Google Scholar 

  4. Fletcher NH. The Chemical Physics of Ice. Cambridge: Cambridge University Press, 1970

    Book  Google Scholar 

  5. Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC. Characterization of a cage form of the water hexamer. Nature, 1996, 381: 501–503

    Article  CAS  Google Scholar 

  6. Nauta K, Miller RE. Formation of cyclic water hexamer in liquid helium: the smallest piece of ice. Science, 2000, 287: 293–295

    Article  CAS  Google Scholar 

  7. Kim J, Majumdar D, Lee HM, Kim KS. Structures and energetics of the water heptamer: Comparison with the water hexamer and octamer. J Chem Phys, 1999, 110: 9128–9134

    Article  CAS  Google Scholar 

  8. Nangia A. ed. Encyclopaedia of Supramolecular Chemistry. New York: Taylor & Francis, 2007

    Google Scholar 

  9. Ludwig R. Water: From clusters to the bulk. Angew Chem Int Ed, 2001, 40: 1808–1827

    Article  CAS  Google Scholar 

  10. Infantes L, Motherwell S. Water clusters in organic molecular crystals. CrystEngComm, 2002, 4: 454–461

    Article  CAS  Google Scholar 

  11. Infantes L, Chisholm J, Motherwell S. Extended motifs from water and chemical functional groups in organic molecular crystals. CrystEngComm, 2003, 5: 480–486

    Article  CAS  Google Scholar 

  12. Mascal M, Infantes L, Chisholm J. Water oligomers in crystal hydrates-what’s news and what isn’t? Angew Chem Int Ed, 2006, 45: 32–36

    Article  CAS  Google Scholar 

  13. Xu WZ, Sun JL, Huang ZT, Zheng QY. Molecular encapsulation of a discrete (H2O)32 cluster with S6 symmetry in an organic crystalline supermolecule. Chem Commun, 2009, 171-173

  14. Han ZB, Zhang GX, Zeng MH, Yuan DQ, Fang QR, Li JR, Ribas J, Zhou HC. Unprecedented marriage of a cationic pentanuclear cluster and a 2D polymeric anionic layer based on a flexible tripodal ligand and a CuII ion. Inorg Chem, 2010, 49: 769–771

    Article  CAS  Google Scholar 

  15. Wei ML, He C, Hua WJ, Duan CY, Li SH, Meng QJ. A large protonated water cluster H+(H2O)27 in a 3D metal-organic framework. J Am Chem Soc, 1998, 120: 3166–3175

    Article  Google Scholar 

  16. Wang Y, Okamura TA, Sun WY, Ueyama N. Large (H2O)56(OH)6 and (H2O)20 clusters inside a nanometer-sized M6L8 cage constructed by five-coordinated copper(II) and flexible carboxamide-containing tripodal ligand. Cryst Growth Des, 2008, 8: 802–804

    Article  CAS  Google Scholar 

  17. Cao ML, Wu JJ, Mo HJ, Ye BH. Template trapping and crystal structure of the magic number (H2O)21 cluster in the tetrahedral hole of a nanoscale global ion packed in a face-centered cubic pattern. J Am Chem Soc, 2009, 131: 3458–3459

    Article  CAS  Google Scholar 

  18. Teil SB, Gokavi GS, Sairam M, Aminabhavi TM. Mixed matrix membranes of poly(vinyl alcohol) loaded with phosphomolybdic heteropolyacid for the pervaporation separation of water-isopropanol mixtures. Colloids Surf, A Physicochem Eng Asp, 2007, 301: 55–62

    Article  Google Scholar 

  19. Odriozola G, Schmitt A, Fernández JC, Álvarez RH. Aggregation kinetics of latex microspheres in alcohol-water media. J Colloid Interface Sci, 2007, 310: 471–480

    Article  CAS  Google Scholar 

  20. Travers F, Douzou P. Dielectric constants of alcoholic-water mixtures at low temperature. J Phys Chem, 1970, 74: 2243–2244

    Article  CAS  Google Scholar 

  21. Bender ML, Glasson WA. The kinetics of simultaneous hydrolysis and alcoholysis of esters in aqueous alcohol solution. J Am Chem Soc, 1959, 81: 1590–1597

    Article  CAS  Google Scholar 

  22. Stockman PA, Blake GA, Lovas FJ, Suenran RD. Microwave rotation-tunneling spectroscopy of the water-methanol dimer: Direct structural proof for the strongest bound conformation. J Chem Phys, 1997, 107: 3782–3790

    Article  CAS  Google Scholar 

  23. Mejía SM, Espinal JF, Mondragón F. Cooperative effects on the structure and stability of (ethanol)3-water, (methanol)3-water heterotetramers and (ethanol)4, (methanol)4 tetramers. J Mol Struct Theochem, 2009, 901: 186–193

    Article  Google Scholar 

  24. da Silva JAB, Moreira FGB, dos Santos VML, Longo RL. On the hydrogen bond networks in the water-methanol mixtures: topology, percolation and small-world. Phys Chem Chem Phys, 2011, 13: 6452–6461

    Article  Google Scholar 

  25. Laaksonen A, Kusalik PG, Svishchev IM. Three-dimensional structure in water-methanol mixture. J Phys Chem A, 1997, 10: 5910–5918

    Article  Google Scholar 

  26. Wakisaka A, Abdoul-Carime H, Yamamoto Y, Kiyozumi Y. Non-ideality of binary mixtures water-methanol and water-acetonitrile from the viewpoint of clustering structure. J Chem Soc Faraday Trans, 1998, 94: 369–374

    Article  CAS  Google Scholar 

  27. Raghuraman KN, Katti KK, Barbour LJ, Pillarsetty N, Barnes CL, Katti KV. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host. J Am Chem Soc, 2003, 125: 6955–6961

    Article  CAS  Google Scholar 

  28. Luo GG, Li DX, Wu DL, Liu L, Zhao QH, Peng C, Xiao ZJ, Dai JC. Characterization of a well-resolved acyclic methanol(water)5 heterohexamer in the solid state. Inorg Chem Commun, 2012, 17: 108–112

    Article  CAS  Google Scholar 

  29. Luo GG, Xiong HB, Dai JC. Syntheses, structural characterization, and properties of {[Cu(bpp)2 (H2O)2](tp)·7H2O} and {[Cu(bpp)2(H2O)](ip)·7H2O} complexes. N New examples of the organic anionic template effect on induced assembly of water clusters (bpp = 1,3-Bis(4-pyridyl) propane, tp = terephthalate, ip = isophthalate). Cryst Growth Des, 2011, 11: 507–513

    Article  CAS  Google Scholar 

  30. Luo GG, Xiong HB, Sun D, Wu DL, Huang RB, Dai JC. A discrete spirocyclic (H2O)9 cluster and 1D novel water chain with tetrameric and octameric clusters in cationic hosts. Cryst Growth Des, 2011, 11: 1948–1956

    Article  CAS  Google Scholar 

  31. Luo GG, Wu DL, Liu L, Xia JX, Li DX, Dai JC, Xiao ZJ. A discrete water hexamer with a new planar tetrameric water moiety trapped in the crystal host of [Ag(azelate)(4,4′-bipyridine)]·(H2O)3. J Mol Struct, 2011, 1005: 172–177

    Article  CAS  Google Scholar 

  32. He WJ, Luo GG, Wu DL, Liu L, Xia JX, Li DX, Dai JC, Xiao ZJ. An odd-numbered heptameric water cluster containing a puckered pentamer self-assembled in a Ag(I) polymeric solid. Inorg Chem Commun, 2012, 18: 4–7

    Article  CAS  Google Scholar 

  33. Xiong HB, Sun D, Luo GG, Huang RB, Dai JC. One 1D T4(0)A(0) water tape embedded in a 1D Cu(II) coordination polymer with 1,3-bis(4-pyridyl)pro-pane. J Mol Struct, 2011, 990: 164–168

    Article  CAS  Google Scholar 

  34. Luo GG, Wu DL, Liu L, Li DX, Zhao QH, Xiao ZJ, Dai JC. A hybrid carboxylate-water decamer with a discrete octameric water moiety self-assembled in a 2D copper(II) coordination polymer. 2012, doi: 10. 1007/s11426-012-4492-2.

  35. Higashi T. ABSCOR. Empirical Absorption Correction based on Fourier Series Approximation. Tokyo: Rigaku Corporation, 1995

    Google Scholar 

  36. Sheldrick GM. SHELXS-97. Program for X-ray Crystal Structure Determination. Germany: University of Göttingen, 1997

    Google Scholar 

  37. Sheldrick GM. SHELXL-97. Program for X-ray Crystal Structure Refinement. Germany: University of Göttingen, 1997

    Google Scholar 

  38. Spek AL. Implemented as the PLATON Procedure, a Multipurpose Crystallographic Tool. The Netherlands: Utrecht University, 1998

    Google Scholar 

  39. Brandenburg K. DIAMOND, Version 3.1f. Crystal Impact GbR, Bonn, Germany

  40. Yang L, Powell DR, Houser RP. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans, 2007, 955-964

  41. Brandys MC, Puddephatt RJ. Ring, polymer and network structures in silver(I) complexes with dipyridyl and diphosphine ligands. Chem Commun, 2001, 1508–1509

  42. Cordes DB, Hanton LR. Structural invariance in silver(I) coordination networks formed using flexible four-armed thiopyridine ligands. Inorg Chem, 2007, 46: 1634–1644

    Article  CAS  Google Scholar 

  43. Ghosh SK. Structure of a discrete hexadecameric water cluster in a metal-organic framework structure. Inorg Chem, 2004, 43: 6687–6889

    Google Scholar 

  44. Yoo S, Aprà E, Zeng XC, Xantheas SS. High-level ab initio electronic structure calculations of water clusters (H2O)16 and (H2O)17: A new global minimum for (H2O)16. J Phys Chem Lett, 2010, 1: 3122–3127

    Article  CAS  Google Scholar 

  45. Bi YF, Liao WP, Zhang HJ, Li DQ. Assembly of “discrete” (H2O)16 water clusters within a supramolecular compound of calixarene. CrystEngComm, 2009, 11: 1213–1216

    Article  CAS  Google Scholar 

  46. Neogi S, Sañudo EC, Bharadwaj PK. Transition-metal porous coordination polymers with a podand ligand: structure of discrete water clusters and variable-temperature magnetism. Eur J Inorg Chem, 2007, 5426-5432

  47. Li JY, Yu JH, Xu RR. A unique self-assembled (H2O)16 water cluster in an inorganic crystal host. Phys Chem Chem Phys, 2009, 11: 1291–1293

    Article  CAS  Google Scholar 

  48. Barbour LJ, Orr GW, Atwood JL. An intermolecular (H2O)10 cluster in a solid-state supramolecular complex. Nature, 1998, 393: 671–673

    Article  CAS  Google Scholar 

  49. Barbour LJ, Orr GW, Atwood JL. Characterization of a well resolved supramolecular ice-like (H2O)10 cluster in the solid state. Chem Commun, 2000, 859-860

  50. Matsumoto M, Saito S, Ohmine I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature, 2002, 416: 409–413

    Article  CAS  Google Scholar 

  51. Custalcean R, Afloroaiei C, Vlassa M, Polverejan M. Formation of extended tapes of cyclic water hexamer in an organic molecular crystal host. Angew Chem Int Ed, 2000, 39: 3094–3096

    Article  Google Scholar 

  52. Maheshwary S, Patel N, Kulkarni AD, Gadre SR. Structure and stability of water clusters (H2O)n, n = 8-20: An ab initio investigation. J Phys Chem A, 2001, 105: 10525–10537

    Article  CAS  Google Scholar 

  53. Sang RL, Xu L. Reversible formation of regular pentagonal dodecahedral (H2O)20 in a 2D metal-organic framework. CrystEngComm, 2010, 12: 1377–1381

    Article  CAS  Google Scholar 

  54. Jeffrey GA. An Introduction to Hydrogen Bonding. New York: Oxford University Press, 1997, Chapters 8 and 9.

    Google Scholar 

  55. González L, Mó O, Yáñes M. High level ab initio and density functional theory studies on methanol-water dimmers and cyclic methanol(water)2 trimer. J Chem Phys, 1998, 109: 139–150

    Article  Google Scholar 

  56. Kirschner KN, Woods RJ. Quantum mechanical study of the nonbonded forces in water-methanol complexes. J Phys Chem A, 2001, 105: 4150–4155

    Article  CAS  Google Scholar 

  57. Clary DC, Benoit DM, Mourik ATV. H-densities: A new concept for hydrated molecules. Acc Chem Res, 2000, 33: 441–447

    Article  CAS  Google Scholar 

  58. Fileti EE, Chaudhuri P, Canuto S. Relative strength of hydrogen bond interaction in alcohol-water complexes. Chem Phys Lett, 2004, 400: 494–499

    Article  CAS  Google Scholar 

  59. Mondal R, Howard JAK. A structural investigation of six solvates of trans-1,4-bis(phenylethynyl)-cyclohexane-1,4-diol. Cryst Growth Des, 2008, 8: 4359–4366

    Article  CAS  Google Scholar 

  60. de Almeida ET, Mauro AE, Santana AM, Ananias SR, Netto AVG, Ferreira JG, Santos RHA. Self-assembly of organometallic Pd(II) complexes via CH3…π interactions: The first example of a cyclopalladated compound with herringbone stacking pattern. Inorg Chem Commun, 2007, 10: 1394–1398

    Article  Google Scholar 

  61. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: John Wiley & Sons, 1986

    Google Scholar 

  62. Wu H, Dong XW, Liu HY, Ma JF, Li SL, Yang J, Liu YY, Su ZM. Influence of anionic sulfonate-containing co-ligands on the solid structures of silver complexes supported by 4,4′-bipyridine bridge. Dalton Trans, 2008, 5331–5341

  63. Yin PX, Zhang J, Li ZJ, Qin YY, Cheng JK, Zhang L, Lin QP, Yao YG. Supramolecular isomerism and various chain/layer substructures in silver(I) compounds: syntheses, structures, and luminescent properties. Cryst Growth Des, 2009, 9: 4884–4896

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GengGeng Luo or JingCao Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, G., He, W., Liu, L. et al. A self-assembled (H2O)20(CH3OH)4 binary cluster containing a grail-shaped hexadecameric water cluster trapped in the cavity of a metal-ligand hybrid. Sci. China Chem. 55, 2507–2514 (2012). https://doi.org/10.1007/s11426-012-4566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4566-1

Keywords

Navigation