Skip to main content
Log in

Morphology-dependent nanocatalysis on metal oxides

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The design and fabrication of solid nanomaterials are the key issues in heterogeneous catalysis to achieve desired performance. Traditionally, the main theme is to reduce the size of the catalyst particles as small as possible for maximizing the number of active sites. In recent years, the rapid advancement in materials science has enabled us to fabricate catalyst particles with tunable morphology. Consequently, both size modulation and morphology control of the catalyst particles can be achieved independently or synergistically to optimize their catalytic properties. In particular, morphology control of solid catalyst particles at the nanometer level can selectively expose the reactive crystal facets, and thus drastically promote their catalytic performance. In this review, we summarize our recent work on the morphology impact of Co3O4, CeO2 and Fe2O3 nanomaterials in catalytic reactions, together with related literature on morphology-dependent nanocatalysis of metal oxides, to demonstrate the importance of tuning the shape of oxide-nanocatalysts for prompting their activity, selectivity and stability, which is a rapidly growing topic in heterogeneous catalysis. The fundamental understanding of the active sites in morphology-tunable oxides that are enclosed by reactive crystal facets is expected to direct the development of highly efficient nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ertl G, Knözinger H, Schüth F, Weitkamp J. Handbook of Heterogeneous Catalysis, 2nd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, 1(1): 1–15

    Book  Google Scholar 

  2. Bell AT. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299: 1688–1691

    Article  CAS  Google Scholar 

  3. Somorjai GA, Li YM. Major successes of theory-and-experiment-combined studies in surface chemistry and heterogeneous catalysis. Top Catal, 2010, 53: 311–325

    Article  CAS  Google Scholar 

  4. Murzin DY. Size-dependent heterogeneous catalytic kinetics. J Mol Catal A: Chem, 2010, 315: 226–230

    Article  CAS  Google Scholar 

  5. Semagina N, Kiwi-Minsker L. Recent advances in the liquid-phase synthesis of metal nanostructures with controlled shape and size for catalysis. Catal Rev-Sci Eng, 2009, 51: 147–217

    Article  CAS  Google Scholar 

  6. Goesmann H, Feldmann C. Nanoparticulate functional materials. Angew Chem Int Ed, 2010, 49: 1362–1395

    Article  CAS  Google Scholar 

  7. Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett, 1987, 16: 405–408

    Article  Google Scholar 

  8. Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal, 1989, 115: 301–309

    Article  CAS  Google Scholar 

  9. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal, 1993, 144: 175–192

    Article  CAS  Google Scholar 

  10. Ueli H, Wolf-Dieter S. Nanoassembled model catalysts. J Appl Phys, 2000, 33: R85–R102

    Google Scholar 

  11. Haruta M. Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss, 2011, 152: 11–32

    Article  CAS  Google Scholar 

  12. Sonström P, Bäumer M. Supported colloidal nanoparticles in heterogeneous gas phase catalysis-on the way to tailored catalysts. PhysChemChemPhys, 2011, 13: 19270–19284

    Google Scholar 

  13. Chen M, Wu BH, Yang J, Zheng NF. Small adsorbate-assisted shape control of Pd and Pt nanocrystal. Adv Mater, 2012, 24: 862–879

    Article  CAS  Google Scholar 

  14. Jia CJ, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. PhysChemChemPhys, 2011, 13: 2457–2487

    CAS  Google Scholar 

  15. Xia YN, Xiong YJ, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed, 2009, 48: 60–103

    Article  CAS  Google Scholar 

  16. Sau TK, Rogach AL. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv Mater, 2010, 22: 1781–1804

    Article  CAS  Google Scholar 

  17. Lim B, Xia YN. Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed, 2011, 50: 76–85

    Article  CAS  Google Scholar 

  18. Polarz S. Shape matters-anisotropy of the morphology of inorganic colloidal particles-synthesis and function. Adv Funct Mater, 2011, 21: 3214–3230

    Article  CAS  Google Scholar 

  19. Tiano AL, Koenigsmann C, Santullia AC, Wong SS. Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem Commun, 2010, 46: 8093–8130

    Article  CAS  Google Scholar 

  20. Patzke GR, Zhou Y, Kontic R, Conrad F. Oxide nanomaterials-synthetic developments, mechanistic studies, and technological innovations. Angew Chem Int Ed, 2011, 50: 826–859

    Article  CAS  Google Scholar 

  21. Halder A, Kundu P, Viswanath B, Ravishankar N. Symmetry and shape issues in nanostructure growth. J Mater Chem, 2010, 20: 4763–4772

    Article  CAS  Google Scholar 

  22. Shen SL, Wang X. Controlled growth of inorganic nanocrystals: Size and surface effects of nuclei. Chem Commun, 2010, 46: 6891–6899

    Article  CAS  Google Scholar 

  23. Narayanan R, El-Sayed MA. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Am Chem Soc, 2004, 126: 7194–7195

    Article  CAS  Google Scholar 

  24. Narayanan R, El-Sayed MA. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett, 2004, 4: 1343–1348

    Article  CAS  Google Scholar 

  25. Narayanan R, El-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J Phys Chem B, 2005, 109: 12663–12676

    Article  CAS  Google Scholar 

  26. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732–735

    Article  CAS  Google Scholar 

  27. Schmidt E, Vargas A, Mallat T, Baiker A. Shape selective enantioselective hydrogenation on Pt nanoparticles. J Am Chem Soc, 2009, 131: 12358–12367

    Article  CAS  Google Scholar 

  28. Mostafa S, Behafarid F, Croy JR, Ono LK, Li L, Yang JC, Frenkel AI, Cuenya BR. Shape-dependent catalytic properties of Pt nanoparticles. J Am Chem Soc, 2010, 132: 15714–15719

    Article  CAS  Google Scholar 

  29. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105: 1025–1102

    Article  CAS  Google Scholar 

  30. Li Y, Liu QY, Shen WJ. Morphology-dependent nanocatalysis: metal particles. Dalton Trans, 2011, 40: 5811–5826

    Article  CAS  Google Scholar 

  31. Zhou KB, Li YD. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed, 2012, 51: 602–613

    Article  CAS  Google Scholar 

  32. Xiong YJ, Wiley BJ, Xia YN. Nanocrystals with unconventional shapes-a class of promising catalysts. Angew Chem Int Ed, 2007, 46:7157–7159

    Article  CAS  Google Scholar 

  33. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater, 2010, 22: 1805–1825

    Article  CAS  Google Scholar 

  34. Wang DS, Li YD. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv Mater, 2011, 23: 1044–1060

    Article  CAS  Google Scholar 

  35. Zahmakıran M, Özkar S. Metal nanoparticles in liquid phase catalysis-from recent advances to future goals. Nanoscale, 2011, 3: 3462–3481

    Article  CAS  Google Scholar 

  36. Tian N, Zhou ZY, Sun SG. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C, 2008, 112: 19801–19817

    Article  CAS  Google Scholar 

  37. Subhramannia M, Pillai VK. Shape-dependent electrocatalytic activity of platinum nanostructures. J Mater Chem, 2008, 18: 5858–5870

    Article  CAS  Google Scholar 

  38. Chen JY, Lim B, Lee EP, Xia YN. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today, 2009, 4: 81–95

    Article  CAS  Google Scholar 

  39. Bing YH, Liu HS, Zhang L, Ghosh D, Zhang JJ. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev, 2010, 39: 2184–2202

    Article  CAS  Google Scholar 

  40. Li J, Ta N, Li Y, Shen WJ. Morphology effect of nanoscale CeO2 in heterogeneous catalytic reactions. Chin J Catal, 2008, 29: 823–830

    Google Scholar 

  41. Bokhoven JA van. Understanding structure-performance relationships in oxidic catalysts: Controlling shape and tuning performance. ChemCatChem, 2009, 1: 363–364

    Article  CAS  Google Scholar 

  42. Xie XW, Shen WJ. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale, 2009, 1: 50–60

    Article  CAS  Google Scholar 

  43. Noguera C. Polar oxide surface. J Phys: Condens Mater, 2000, 12: R367–R410

    Article  CAS  Google Scholar 

  44. Goniakowski J, Finocchi F, Noguera C. Polarity of oxide surfaces and nanostructures. Rep Prog Phys, 2008, 71: 016501 (55 pages)

    Article  CAS  Google Scholar 

  45. Jacek Z. Catalytic anisotropy of MoO3 in oxidation reactions in the light of bond-strength model of active sites. J Catal, 1983, 80: 263–273

    Article  Google Scholar 

  46. Volta JC, Portefaix JL. Structure sensitivity of mild oxidation reactions on oxide catalysts-a review. Appl Catal, 1985, 18: 1–32

    Article  CAS  Google Scholar 

  47. Leng M, Liu M, Zhang Y, Wang Z, Yu C, Yang X, Zhang H, Wang C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity. J Am Chem Soc, 2010, 132: 17084–17087

    Article  CAS  Google Scholar 

  48. Bao HZ, Zhang WH, Hua Q, Jiang ZQ, Yang JL, Huang WX. Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals. Angew Chem Int Ed, 2011, 50: 12294–12298

    Article  CAS  Google Scholar 

  49. Kuo CH, Huang MH. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010, 5: 106–116

    Article  CAS  Google Scholar 

  50. Wang X, Han XG, Xie SF, Kuang Q, Jiang YQ, Zhang SB, Mu XL, Chen GX, Xie ZX, Zheng LS. Controlled synthesis and enhanced catalytic and gas-sensing properties of Tin dioxide nanoparticles with exposed high-energy facets. Chem Eur J, 2012, 18: 2283–2289

    Article  CAS  Google Scholar 

  51. Choudary BM, Mulukutla RS, Klabunde KJ. Benzylation of aromatic compounds with different crystallites of MgO. J Am Chem Soc, 2003, 125: 2020–2021

    Article  CAS  Google Scholar 

  52. Zhu KK, Hu JC, Kübel C, Richards R. Efficient preparation and catalytic activity of MgO (111) nanosheets. Angew Chem Int Ed, 2006, 45: 7277–7281

    Article  CAS  Google Scholar 

  53. Hu JC, Zhu KK, Chen LF, Kübel C, Richards R. MgO(111) nanosheets with unusual surface activity. J Phys Chem C, 2007, 111: 12038–12044

    Article  CAS  Google Scholar 

  54. Ding WP, Guo XF, Lv JG, Yang WM, Zhang HL. Method for preparation of γ-alumina nanotube with (111) face preferentially exposed. CN patent, CN 101774533 A, 2010

  55. Keng PY, Kim BY, Shim IB, Sahoo R, Veneman PE, Armstrong NR, Yoo H, Pemberton JE, Bull MM, Griebel JJ, Ratcliff EL, Nebesny KG, Pyun J. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano, 2009, 3: 3143–3157

    Article  CAS  Google Scholar 

  56. Wang Y, Zhang HJ, Wei J, Wong CC, Lina JY, Borgna A. Crystal-match guided formation of single-crystal tricobalt tetraoxygen nanomesh as superior anode for electrochemical energy storage. Energy Environ Sci, 2011, 4: 1845–1854

    Article  CAS  Google Scholar 

  57. Wang Y, Zhong ZY, Chen Y, Ng CT, Lin JY. Controllable synthesis of Co3O4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Res, 2011, 4: 695–704

    Article  CAS  Google Scholar 

  58. Li CC, Yin XM, Wang TH, Zeng HC. Morphogenesis of highly uniform CoCO3 submicrometer crystals and their conversion to mesoporous Co3O4 for gas-sensing applications. Chem Mater, 2009, 21: 4984–4992

    Article  CAS  Google Scholar 

  59. Li H, Fei GT, Fan M, Cui P, Guo X, Yan P, Zhang LD. Synthesis of urchin-like Co3O4 hierarchical micro/nanostructures and their photocatalytic activity. Appl Surf Sci, 2011, 257: 6527–6530

    Article  CAS  Google Scholar 

  60. Kou JH, Bennett-Stamperb C, Varma RS. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property. Nanoscale, 2011, 3: 4958–4961

    Article  CAS  Google Scholar 

  61. Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458: 746–749

    Article  CAS  Google Scholar 

  62. Yu YB, Takei T, Ohashi H, He H, Zhang XL, Haruta M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at −80 °C. J Catal, 2009, 267: 121–128

    Article  CAS  Google Scholar 

  63. Hu LH, Sun KQ, Peng Q, Xu BQ, Li YD. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res, 2010, 3: 363–368

    Article  CAS  Google Scholar 

  64. Xu CX, Liu YQ, Zhou C, Wang L, Geng HR, Ding Y. An in situ dealloying and oxidation route to Co3O4 nanosheets and their ambient-temperature CO oxidation activity. ChemCatChem, 2011, 3: 399–407

    Article  CAS  Google Scholar 

  65. Sun Y, Lv P, Yang JY, He L, Nie JC, Liu XW, Li YD. Ultrathin Co3O4 nanowires with high catalytic oxidation of CO. Chem Commun, 2011, 47: 11279–11281

    Article  CAS  Google Scholar 

  66. Teng YH, Kusano Y, Azuma M, Haruta M, Shimakawa Y. Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catal Sci Technol, 2011, 1: 920–922

    Article  CAS  Google Scholar 

  67. Hu LH, Peng Q, Li YD. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc, 2008, 130: 16136–16137

    Article  CAS  Google Scholar 

  68. Wang XZ, Ding L, Zhao ZB, Xu WY, Meng B, Qiu JS. Novel hydrodesulfurization nano-catalysts derived from Co3O4 nanocrystals with different shapes. Catal Today, 2011, 75: 509–514

    Article  CAS  Google Scholar 

  69. Xu XL, Yang E, Li JQ, Li Y, Chen WK. A DFT study of CO catalytic oxidation by N2O or O2 on the Co3O4(110) surface. ChemCatChem, 2009, 1: 384–392

    Article  CAS  Google Scholar 

  70. Broqvist P, Panas I, Persson H. A DFT study on CO oxidation over Co3O4. J Catal, 2002, 210: 198–206

    Article  CAS  Google Scholar 

  71. Yao YY. The oxidation of hydrocarbons and CO over metal oxides. III. Co3O4. J Catal, 1974, 33: 108–122

    Article  CAS  Google Scholar 

  72. Perti D, Kabel RL. Kinetics of CO oxidation over Co3O4/Al2O3. AIChE J, 1985, 31: 1420–1440

    Article  CAS  Google Scholar 

  73. Beaufils JP, Barbaux Y. Study of adsorption on powders by surface differential diffraction measurements. Argon on Co3O4. J Appl Crystallogr, 1982, 15: 301–307

    Article  CAS  Google Scholar 

  74. Ziolkowski J, Barbaux Y. Identification of sites active in oxidation of butene-1 to butadiene and CO2 on CO3O4 in terms of the crystallochemical model of solid surfaces. J Mol Catal, 1991, 67: 199–215

    Article  CAS  Google Scholar 

  75. Trovarelli A. Catalysis by Ceria and Related Materials, in: Hutchings GJ (ed), Catalytic Science Series. London: Imperial College Press, 2002

    Google Scholar 

  76. Sayle TXT, Parker SC, Catlow CRA. The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf Sci, 1994, 316: 329–336

    Article  CAS  Google Scholar 

  77. Sayle DC, Maicaneanu SA, Watson GW. Atomistic models for CeO2(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia. J Am Chem Soc, 2002, 124: 11429–11439

    Article  CAS  Google Scholar 

  78. Jiang Y, Adams JB, Schilfgaarde M van. Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. J Chem Phys, 2005, 123: 064701

    Article  CAS  Google Scholar 

  79. Zhou KB, Wang X, Sun XM, Peng Q, Li YD. Catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal, 2005, 229: 206–212

    Article  CAS  Google Scholar 

  80. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B, 2005, 109: 24380–24385

    Article  CAS  Google Scholar 

  81. Ta N, Zhang ML, Li J, Li HJ, Li Y, Shen WJ. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal Today, 2009, 148: 179–183

    Article  CAS  Google Scholar 

  82. Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A. Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. Nano Lett, 2011, 11: 361–364

    Article  CAS  Google Scholar 

  83. Lv JG, Shen Y, Peng LM, Guo XF, Ding WP. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem Commun, 2010, 46: 5909–5911

    Article  CAS  Google Scholar 

  84. Ta N, Wang FG, Li HJ, Shen WJ. Influence of Au particle size on Au/CeO2 catalysts for CO oxidation. Catal Today, 2011, 175: 541–545

    Article  CAS  Google Scholar 

  85. Martin P, Parker SC, Sayle DC, Watson GW. Atomistic modeling of multilayered ceria nanotubes. Nano Lett, 2007, 7: 543–546

    Article  CAS  Google Scholar 

  86. González-Rovira L, Sánchez-Amaya JM, López-Haro M, Rio E, Hungría AB, Midgley P, Calvino JJ, Bernal S, Botana FJ. Single-step process to prepare CeO2 nanotubes with improved catalytic activity. Nano Lett, 2009, 9: 1395–1400

    Article  CAS  Google Scholar 

  87. Yu T, Lim B, Xia YN. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew Chem Int Ed, 2010, 49: 4484–4487

    Article  CAS  Google Scholar 

  88. Wang DY, Kang YJ, Doan-Nguyen V, Chen J, Küngas R, Wieder NL, Bakhmutsky K, Gorte RJ, Murray CB. Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew Chem Int Ed, 2011, 50: 4378–4381

    Article  CAS  Google Scholar 

  89. Jolivet JP, Chanéac C, Tronc E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun, 2004, 481–487

  90. Eggleston CM. Toward new uses for hematite. Science, 2008, 320: 184–185

    Article  CAS  Google Scholar 

  91. Wu C, Yin P, Zhu X, OuYang C, Xie Y. Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B, 2006, 110: 17806–17812

    Article  CAS  Google Scholar 

  92. Liu L, Kou HZ, Mo WL, Liu HJ, Wang YQ. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B, 2006, 110: 15218–15223

    Article  CAS  Google Scholar 

  93. Li X, Wei W, Wang S, Kuai L, Geng B. Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale, 2011, 3: 718–724

    Article  CAS  Google Scholar 

  94. Yang Y, Ma H, Zhuang J, Wang X. Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg Chem, 2011, 50: 10143–10151

    Article  CAS  Google Scholar 

  95. Li ZS, Wan LJ, Yan SC, Wang XY, Zou ZG. Solvothermal synthesis of monodisperse iron oxides with various morphologies and their applications in removal of Cr(VI). CrystEngCommun, 2011, 13: 2727–2733

    Article  CAS  Google Scholar 

  96. Machala L, Tuček J, Zbořil R. Polymorphous transformations of nanometric Iron(III) oxide-A review. Chem Mater, 2011, 23: 3255–3272

    Article  CAS  Google Scholar 

  97. Jia CJ, Sun L, Luo DF, Han XD, Heyderman LJ, Yan ZG, Yan CH, Zheng K, Zhang Z, Takano M, Hayashi N, Eltschka M, Klaui M, Rudiger U, Kasama T, Gontard LC, Borkowski RED, Tzvetkov G, Raabe J. Large-scale synthesis of single-crystalline Iron oxide magnetic nanorings. J Am Chem Soc, 2008, 130: 16968–16977

    Article  CAS  Google Scholar 

  98. Baetzold RC, Yang H. Computational study on surface structure and crystal morphology of γ-Fe2O3-toward deterministic synthesis of nanocrystals. J Phys Chem B, 2003, 107: 14357–14364

    Article  CAS  Google Scholar 

  99. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR. The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B-Environ, 2003, 43: 151–162

    Article  CAS  Google Scholar 

  100. Reddy BV, Rasouli F, Hajaligol MR, Khanna SN. Novel pathway for CO oxidation on a Fe2O3 cluster. Chem Phys Lett, 2004, 384: 242–245

    Article  CAS  Google Scholar 

  101. Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey RJ. Adsorption, activation, and oxidation of ammonia over SCR catalysts. J Catal, 1995, 157: 523–535

    Article  CAS  Google Scholar 

  102. Zheng YH, Cheng Y, Wang YS, Bao F, Zhou LH, Wei XF, Zhang YY, Zheng Q. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J Phys Chem B, 2006, 110: 3093–3097

    Article  CAS  Google Scholar 

  103. Gao QX, Wang XF, Di JL, Wu XC, Tao YR. Enhanced catalytic activity of α-Fe2O3 nanorods enclosed with {110} and {001} planes for methane combustion and CO oxidation. Catal Sci Technol, 2011, 1: 574–577

    Article  CAS  Google Scholar 

  104. Liu X, Liu J, Chang Z, Sun X, Li Y. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal Commun, 2011, 12: 530–534

    Article  CAS  Google Scholar 

  105. Zhao N, Ma W, Cui ZM, Song WG, Xu CL, Gao MY. Polyhedral maghemite nanocrystals prepared by a flame synthetic method: Preparations, characterizations, and catalytic properties. ACS Nano, 2009, 3: 1775–1780

    Article  CAS  Google Scholar 

  106. Mou XL, Li Y, Zhang BS, Yao LD, Wei XJ, Su DS, Shen WJ. Crystal-phase- and morphology-controlled synthesis of Fe2O3 nanomaterials. Eur J Inorg Chem, 2012, DOI: 10.1002/ejic.201101066

  107. Mou XL, Zhang BS, Li Y, Yao LD, Wei XJ, Su DS, Shen WJ. Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angew Chem Int Ed, 2012. DOI: 10. 1002/anie.201107113

  108. Ennas G, Marongiu G, Musinu A, Falqui A, Ballirano P, Caminiti R. Characterization of nanocrystalline γ-Fe2O3 prepared by wet chemical method. J Mater Res, 1999, 14: 1570–1575

    Article  CAS  Google Scholar 

  109. Cornell RM, Schwertmann U. The iron oxides: Structure, properties, reactions, occurrences, and uses. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007

    Google Scholar 

  110. Parvulescu VI, Grange P, Delmon B. Catalytic removal of NO. Catal Today, 1998, 46: 233–316

    Article  CAS  Google Scholar 

  111. Chafik T, Kondarides DI, Verykios XE. Catalytic reduction of NO by CO over Rhodium catalysts: 1. adsorption and displacement characteristics investigated by in situ FTIR and transient-MS techniques. J Catal, 2000, 190: 446–459

    Article  CAS  Google Scholar 

  112. Crocoll M, Kureti S, Weisweiler W. Mean field modeling of NO oxidation over Pt/Al2O3 catalyst under oxygen-rich conditions. J Catal, 2005, 229: 480–489

    Article  CAS  Google Scholar 

  113. Schmitz P, Kudla R, Drews A, Chen A, Lowema C, McCabe R, Schneider W, Goralskijr C. NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. Appl Catal B-Environ, 2006, 67: 246–256

    Article  CAS  Google Scholar 

  114. Okamoto Y, Kubota T, Ohto Y, Nasu S. Physicochemical characterization of Fe/ZrO2 catalysts for NO-CO reaction. J Catal, 2000, 192: 412–422

    Article  CAS  Google Scholar 

  115. Rühle T, Timpe O, Pfänder N, Schlögl R. Tribochemical activation of iron oxide for the reduction of NO with CO: How lattice defects can influence the catalytic activity. Angew Chem Int Ed, 2000, 39: 4379–4382

    Article  Google Scholar 

  116. Natile M. Surface reactivity of NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: Interaction with methanol. J Mol Catal A-Chem, 2004, 217: 175–184

    Article  CAS  Google Scholar 

  117. Hu Y, Dong L, Shen M, Liu D, Wang J, Ding W, Chen Y. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. Appl Catal B-Environ, 2001, 31: 61–69

    Article  CAS  Google Scholar 

  118. Randall H, Doepper R, Renken A. Reduction of nitrogen oxides by carbon monoxide over an iron oxide catalyst under dynamic conditions. Appl Catal B-Environ, 1998, 17: 357–369

    Article  CAS  Google Scholar 

  119. Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed, 2008, 47: 2884–2887

    Article  CAS  Google Scholar 

  120. Feng L, Hoang DT, Tsung CK, Huang WY, Lo SHY, Wood JB, Wang HT, Tang JY, Yang PD. Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Res, 2011, 4: 61–71

    Article  CAS  Google Scholar 

  121. Wu ZL, Li MJ, Overbury SH. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J Catal, 2012, 285: 61–73

    Article  CAS  Google Scholar 

  122. Han WQ, Wen W, Hanson JC, Teng XW, Marinkovic N, Rodriguez JA. One-dimensional ceria as catalyst for the low-temperature water-gas shift reaction. J Phys Chem C, 2009, 113: 21949–21955

    Article  CAS  Google Scholar 

  123. Yu T, Zeng J, Lim B, Xia YN. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv Mater, 2010, 22: 5188–5192

    Article  CAS  Google Scholar 

  124. Liu LJ, Yao ZJ, Deng Y, Gao F, Liu B, Dong L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO-CeO2 for NO reduction by CO. ChemCatChem, 2011, 3: 978–989

    Article  CAS  Google Scholar 

  125. Han J, Kim HJ, Yoon S, Lee H. Shape effect of ceria in Cu-ceria catalysts for preferential CO oxidation. J Mol Catal A: Chem, 2011, 335: 82–88

    Article  CAS  Google Scholar 

  126. Gawade P, Mirkelamoglu B, Ozkan US. The Role of support morphology and impregnation medium on the water gas shift activity of ceria-supported copper catalysts. J Phys Chem C, 2010, 114: 18173–18181

    Article  CAS  Google Scholar 

  127. Hu LH, Peng Q, Li YD. Low-temperature CH4 catalytic combustion over Pd catalyst supported on Co3O4 nanocrystals with well-defined crystal planes. ChemCatChem, 2011, 3: 868–874

    Article  CAS  Google Scholar 

  128. Xue WJ, Wang YF, Li P, Liu ZT, Hao ZP, Ma CY. Morphology effects of Co3O4 on the catalytic activity of Au-Co3O4 catalysts for complete oxidation of trace ethylene. Catal Commun, 2011, 12: 1265–1268

    Article  CAS  Google Scholar 

  129. Boucher MB, Goergen S, Yi N, Flytzani-Stephanopoulos M. “Shape effects” in metal oxide supported nanoscale gold catalysts. Phys Chem Chem Phys, 2011, 13: 2517–2527

    Article  CAS  Google Scholar 

  130. Chen YC, Chen KB, Lee CS. Direct synthesis of Zr-doped ceria nanotubes. J Phys Chem C, 2009, 113: 5031–5034

    Article  CAS  Google Scholar 

  131. Chen WT, Chen KB, Wang MF, Weng SF, Lee CS, Lin MC. Enhanced catalytic activity of Ce1−xMxO2 (M = Ti, Zr, and Hf) solid solution with controlled morphologies. Chem Commun, 2010, 46: 3286–3288

    Article  CAS  Google Scholar 

  132. Acuña LM, Muñoz FF, Cabezas MD, Lamas DG, Leyva AG, Fantini MCA, Baker RT, Fuentes RO. Improvement in the reduction behavior of novel ZrO2-CeO2 solid solutions with a tubular nanostructure by incorporation of Pd. J Phys Chem C, 2010, 114: 19687–19696

    Article  CAS  Google Scholar 

  133. Li HJ, Qi GS, Ta N, Zhang XJ, Li W, Shen WJ. Morphological impact of manganese-cerium oxides on ethanol oxidation. Catal Sci Technol, 2011, 1: 1677–1682

    Article  CAS  Google Scholar 

  134. Cao TP, Li YJ, Wang CH, Wei LM, Shao CL, Liu YC. Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance. J Sol-Gel Sci Technol, 2010, 55: 105–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenJie Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Shen, W. Morphology-dependent nanocatalysis on metal oxides. Sci. China Chem. 55, 2485–2496 (2012). https://doi.org/10.1007/s11426-012-4565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4565-2

Keywords

Navigation