Skip to main content
Log in

Detailed magnetic study on the formato-bridged MOFs with anion-tunable magnetic properties

  • Articles
  • Special Topic · Molecular Magnetism
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Detailed studies of the structures, magnetic properties and photodimerization of a series of formato-bridged MOFs with the general formula M2(HCOO)3(4,4′-bpe)3(H2O)3(X) (4,4′-bpe = 4,4′-bipyridylethylene, M = Mn (1-X), X = ClO 4 , NO 3 , BF 4 , I, Br; M = Co (2 -X), X = ClO 4 , NO 3 ; M = Zn (3-X), X = NO3/−) were reported. Careful magnetic measurements on an oriented single crystal of 1-ClO 4 determined the spin-flop magnetic phase diagram and some intrinsic parameters, such as the intralayer coupling J, the anisotropy field H A and the exchange field H E. Different anions can remarkably tune the magnetic properties of 1-X, especially the critical fields of the spin-flop transition. Compound 2-ClO 4 remained paramagnetic down to 2 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller JS, Drillon M. Magnetism: Molecules to Materials. Weinheim: Wiley-VCH, 2002–2005, Vol. I–V

    Google Scholar 

  2. Thompson LK. Special issue on magnetism-molecular and supramolecular perspectives. Coord Chem Rev, 2005, 249: 2549–2730

    Article  CAS  Google Scholar 

  3. Coronado E, Dunbar KR. Forum issue on molecular magnetism. Inorg Chem, 2009, 48: 3293–3896

    Article  CAS  Google Scholar 

  4. Brechin EK. Themed issue on molecular magnetism. Dalton Trans, 2010, 39: 4671–5038

    Article  Google Scholar 

  5. Miller JS, Gatteschi D. Molecule-based magnets themed issue. Chem Soc Rev, 2011, 40: 3053–3368

    Article  Google Scholar 

  6. Manriquez JM, Yee GT, Mclean RS, Epstein AJ, Miller JS. A room-temperature molecular/organic-based magnet. Science, 1991, 252: 1415–1417

    Article  CAS  Google Scholar 

  7. Ferlay S, Mallah T, Ouahès R, Veillet P, Verdaguer M. A roomtemperature organometallic magnet based on Prussian blue. Nature, 1995, 378: 701–703

    Article  CAS  Google Scholar 

  8. Miller JS. Magnetically ordered molecule-based materials. Chem Soc Rev, 2011, 40: 3266–3296

    Article  CAS  Google Scholar 

  9. Rittenberg DK, Sugiura K, Sakata Y, Mikami S, Epstein AJ, Miller JS. Large coercivity and high remanent magnetization organic-based magnets. Adv Mater, 2000, 12: 126–130

    Article  CAS  Google Scholar 

  10. Sessoli R. Record hard magnets: Glauber dynamics are key. Angew Chem Int Ed, 2008, 47: 5508–5510

    Article  CAS  Google Scholar 

  11. Gatteschi D, Sessoli R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed, 2003, 42: 268–297

    Article  CAS  Google Scholar 

  12. Rinehart JD, Fang M, Evans WJ, Long JR. Strong exchange and magnetic blocking in N 3−2 radical-bridged lanthanide complexes. Nat Chem, 2011, 3: 538–542

    Article  CAS  Google Scholar 

  13. Coulon C, Miyasaka H, Clérac R. Single-chain magnets: theoretical approach and experimental systems. Struct Bonding, 2006, 122: 163–206

    Article  CAS  Google Scholar 

  14. Bogani L, Vindigni A, Sessoli R, Gatteschi D. Single chain magnets: Where to from here? J Mater Chem, 2008, 18: 4750–4758

    Article  CAS  Google Scholar 

  15. Coronado E, Martí-Gastaldo C, Navarro-Moratalla E, Ribera A, Blundell SJ, Baker PJ. Coexistence of superconductivity and magnetism by chemical design. Nat Chem, 2011, 2: 1031–1036

    Article  Google Scholar 

  16. Sato O, Tao J, Zhang YZ. Control of magnetic properties through external stimuli. Angew Chem Int Ed, 2007, 46: 2152–2187

    Article  CAS  Google Scholar 

  17. Dechambenoit P, Long JR. Microporous magnets. Chem Soc Rev, 2011, 40: 3249–3265

    Article  CAS  Google Scholar 

  18. Rogez G, Viart N, Drillon M. Multiferroic materials: The attractive approach of metal-organic frameworks (MOFs). Angew Chem Int Ed, 2010, 49: 1921–1923

    Article  CAS  Google Scholar 

  19. Wang XY, Wang ZM, Gao S. Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chem Commun, 2008. 281–294

  20. Ribas J, Escuer A, Monfort M, Vicente R, Cortés R, Lezama L, Rojo T. Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior. Coord Chem Rev, 1999, 193–195: 1027–1068

    Article  Google Scholar 

  21. Escuer A, Aromí G. Azide as a bridging ligand and magnetic coupler in transition metal clusters. Eur J Inorg Chem, 2006. 4721–4736

  22. Wang ZM, Zhang B, Zhang YJ, Kurmoo M, Liu T, Gao S, Kobayashi H. A family of porous magnets, [M3(HCOO)6] (M = Mn, Fe, Co and Ni). Polyhedron, 2007, 26: 2207–2215

    Article  CAS  Google Scholar 

  23. Weng DF, Wang ZM, Gao S. Framework-structured weak ferromagnets. Chem Soc Rev, 2011, 40: 3157–3181

    Article  CAS  Google Scholar 

  24. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev, 1960, 120: 91–98

    Article  CAS  Google Scholar 

  25. Moriya T. Theory of magnetism of NiF2. Phys Rev, 1960, 117: 635–647

    Article  CAS  Google Scholar 

  26. Dzialoshinski I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids, 1958, 4: 241–255

    Article  Google Scholar 

  27. Wang XY, Wang L, Wang ZM, Gao S. Solvent-tuned azido-bridged Co2+ layers: Square, honeycomb, and kagomé. J Am Chem Soc, 2006, 128: 674–675

    Article  CAS  Google Scholar 

  28. Liu T, Zhang YJ, Wang ZM, Gao S. A 64-nuclear cubic cage incorporating propeller-like FeIII 8 apices and HCOO edges. J Am Chem Soc, 2008, 130: 10500–10501

    Article  CAS  Google Scholar 

  29. Wang XY, Wang ZM, Gao S. Detailed magnetic studies on Co(N3)2(4-acetylpyridine)2: A weak-ferromagnet with a very big canting angle. Inorg Chem, 2008, 47: 5720–5726

    Article  CAS  Google Scholar 

  30. Wang ZM, Zhang B, Inoue K, Fujiwara H, Otsuka T, Kobayashi H, Kurmoo M. Occurrence of a rare 49·66 structural topology, chirality, and weak ferromagnetism in the [NH4][MII(HCOO)3] (M = Mn, Co, Ni) frameworks. Inorg Chem, 2007, 46: 437–445

    Article  CAS  Google Scholar 

  31. Xu GC, Ma XM, Zhang L, Wang ZM, Gao S. Disorder-order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. J Am Chem Soc, 2010, 132: 9588–9590

    Article  CAS  Google Scholar 

  32. Xu GC, Zhang W, Ma XM, Chen YH, Zhang L, Cai HL, Wang ZM, Xiong RG, Gao S. Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. J Am Chem Soc, 2011, 133: 14948–14951

    CAS  Google Scholar 

  33. Li MY, Kurmoo M, Wang ZM, Gao S. Metal-organic niccolite: Synthesis, structures, phase transition, and magnetic properties of [CH3NH2(CH2)2NH2CH3][M2(HCOO)6] (M = divalent Mn, Fe, Co, Ni, Cu and Zn). Chem Asian J, 2011, 6: 3084–3096

    Article  CAS  Google Scholar 

  34. Wang ZM, Zhang YJ, Liu T, Kurmoo M, Gao S. [Fe3(HCOO)6]: A permanent porous diamond framework displaying H2/N2 adsorption, guest inclusion, and guest-dependent magnetism. Adv Funct Mater, 2007, 17: 1523–1536

    Article  CAS  Google Scholar 

  35. Jain P, Ramachandran V, Clark RJ, Zhou HD, Toby BH, Dalal NS, Kroto HW, Cheetham AK. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. J Am Chem Soc, 2009, 131: 13625–13627

    Article  CAS  Google Scholar 

  36. Zhao JP, Hu BW, Lloret F, Tao J, Yang Q, Zhang XF, Bu XH. Magnetic behavior control in niccolite structural metal formate frameworks [NH2(CH3)2][FeIIIMII(HCOO)6] (M = Fe, Mn, and Co) by varying the divalent metal ions. Inorg Chem, 2010, 49: 10390–10399

    Article  CAS  Google Scholar 

  37. Wang XY, Wei HY, Wang ZM, Gao S, Chen ZD. Formates-the analogue of azide: Structural and magnetic properties of M(HCOO)2(4,4′-bpy)·H2O (M = Mn, Co, Ni; n = 0, 5). Inorg Chem, 2005, 44: 572–583

    Article  CAS  Google Scholar 

  38. Ghosh AK, Ghoshal D, Zangrando E, Ribas J, Chaudhuri NR. Rare azido-bridged manganese(II) systems: Syntheses, crystal structures, and magnetic properties. Inorg Chem, 2005, 44: 1786–1793

    Article  CAS  Google Scholar 

  39. Niel V, Muñoz MC, Gaspar AB, Galet A, Levchenko G, Real JA. Thermal-, pressure-, and light-induced spin transition in novel cyanide-bridged FeII-AgI bimetallic compounds with three-dimensional interpenetrating double structures {FeIILx[Ag(CN)2]2}·G. Chem Eur J, 2002, 8: 2446–2453

    Article  CAS  Google Scholar 

  40. Matouzenko GS, Jeanneau E, Verat AY, Bousseksou A. Spin crossover and polymorphism in a family of 1,2-bis(4-pyridyl)ethene-bridged binuclear iron(II) complexes. A key role of structural distortions. Dalton Trans, 2011, 40: 9608–9618

    Article  CAS  Google Scholar 

  41. MacGillivray LR. From engineering crystals to engineering molecules: emergent consequences of controlling reactivity in the solid state using linear templates. CrystEngComm, 2002, 4: 37–41

    Article  Google Scholar 

  42. Toh NL, Nagarathinam M, Vittal JJ. Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through single-crystal to single-crystal transformation. Angew Chem Int Ed, 2005, 44: 2237–2241

    Article  CAS  Google Scholar 

  43. Varshney DB, Gao XC, Friščić T, MacGillivray LR. Heteroditopic Rebek’s imide directs the reactivity of homoditopic olefins within desolvated quaternary assemblies in the solid state. Angew Chem Int Ed, 2006, 45: 646–650

    Article  CAS  Google Scholar 

  44. Wang XY, Wang ZM, Gao S. A pillared layer MOF with aniontunable magnetic properties and photochemical [2 + 2] cycloaddition. Chem Commun, 2007, 1127–1129

  45. SHELXTL, Version 5.1, Bruker Analytical Systems, Madison, WI 1997

  46. Schmidt GM. Photodimerization in the solid state. J Pure Appl Chem, 1971, 27: 647–678

    Article  CAS  Google Scholar 

  47. Rushbrook GS, Wood PJ. On the Curie points and high temperature susceptibilities of Heisenberg model ferromagnetic. Mol Phys, 1958, 1: 257–283

    Article  Google Scholar 

  48. Carlin RL. Magnetochemistry. Berlin Heidelberg: Springer-Verlag, 1986

    Book  Google Scholar 

  49. Wang XY, Wang L, Wang ZM, Su G, Gao S. Coexistence of spin-canting, metamagnetism, and spin-flop in a (4,4) layered manganese azide polymer. Chem Mater, 2005, 17: 6369–6380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XinYi Wang or Song Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, Z. & Gao, S. Detailed magnetic study on the formato-bridged MOFs with anion-tunable magnetic properties. Sci. China Chem. 55, 1055–1063 (2012). https://doi.org/10.1007/s11426-012-4561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4561-6

Keywords

Navigation