Skip to main content
Log in

Multi-component hydrogen-bonding salts formed between imidazole and aromatic acids: Synthons cooperation and crystal structures

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C3H5N2+)·(C7H5O4 )] (1), [(C3H5N2 +)·(C7H4O3Cl)]C7H5O3Cl (2), and [(C3H5N2 +)(C12H7O4 )] (3). Proton transfer occurs from the COOH of carboxylic acid to nitrogen of imidazole in all complexes (13), leading to the hydrogen bond N-H…O in all structures. To our knowledge, the recognition pattern between the carboxylic acid group and imidazole (acid-imidazole synthon) is less well-studied so far. The cooperation among COOH, COO and imidazolium cation functional groups for the observed hydrogen bond synthons is examined in the three structures. Generally, the strong N-H…O and O-H…O hydrogen bonds define supramolecular architecture and connectivity within chains, while weaker C-H…O hydrogen bonds play the dominant role in controlling the interactions between layers in these novel organic salts. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bond AD, Jones W. Supramolecular organization and materials design. Cambridge: Cambridge University Press, 2002

    Google Scholar 

  2. Nangia A. Database research in crystal engineering. CrystEngComm, 2002, 4: 93–101

    Article  CAS  Google Scholar 

  3. Desiraju GR. Crystal engineering: From molecules to materials. J Mol Struct, 2003, 656: 5–15

    Article  CAS  Google Scholar 

  4. Braga D, Brammer L, Champness NR. New trends in crystal engineering. CrystEngComm, 2005, 7: 1–19

    Article  CAS  Google Scholar 

  5. Schmidt GM. Photodimerization in the solid state. J Pure Appl Chem, 1971, 27: 647–678

    Article  CAS  Google Scholar 

  6. Desiraju GR. Chemistry beyond the molecule. Nature, 2001, 412: 397–400

    Article  CAS  Google Scholar 

  7. Du M, Zhang ZH, Guo W, Fu XJ. Multi-component hydrogen-bonding assembly of a pharmaceutical agent pamoic acid with piperazine or 4,4’-bipyridyl: A channel hydrated salt with multiple-helical motifs vs a bimolecular cocrystal. Cryst Growth Des, 2009, 9: 1655–1657

    Article  CAS  Google Scholar 

  8. Shan N, Bond AD, Jones W. Supramolecular architectures of cyclohexane-1, 3 cis, 5 cis-tricarboxylic acid in acid: Base complexes. New J Chem, 2003, 27: 365–371

    Article  CAS  Google Scholar 

  9. Holman KT, Martin SM, Parker DP, Ward MD. The generality of architectural isomerism in designer inclusion frameworks. J Am Chem Soc, 2001, 123: 4421–4431

    Article  CAS  Google Scholar 

  10. Vishweshwar P, Nangia A, Lynch VM. Recurrence of carboxylic acid-pyridine supramolecular synthon in the crystal structures of some pyrazinecarboxylic acids. J Org Chem, 2002, 67: 556–565

    Article  CAS  Google Scholar 

  11. Du M, Zhang ZH, Zhao XJ, Cai H. Synthons competition/prediction in cocrystallization of flexible dicarboxylic acids with bent dipyridines. Cryst Growth Des, 2006, 6: 114–121

    Article  CAS  Google Scholar 

  12. Walsh BRD, Brander MW, Fleischman S, Morales LA, Moulton B, Hornedo NR, Zawopotko MJ. Crystal engineering of the composition of pharmaceutical phases. Chem Commun, 2003, 2: 186–187

    Article  Google Scholar 

  13. Duchamp DJ, Marsh RE. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid). Acta Crystallogr Sec B, 1969, 25: 5–19

    Article  CAS  Google Scholar 

  14. Zhang XL, Ye BH, Chen XM. Infinite water chains trapped in an organic framework constructed from melamine with 1,5-naphthalenedisulfonic acid via hydrogen bonds. Cryst Growth Des, 2005, 5: 1609–1616

    Article  CAS  Google Scholar 

  15. López C, Claramunt RM, Garcia MA, Pinilla E, Torres MR, Alkorta I, Elguero J. Cocrystals of 3,5-dimethyl-1H-pyrazole and salicylic acid: controlled formation of trimers via O-H…NN hydrogen bonds. Cryst Growth Des, 2007, 7: 1176–1184

    Article  Google Scholar 

  16. Aakeröy CM, Beatty AM, Helfrich BA. “Total synthesis” supramolecular style: Design and hydrogen-bond-directed assembly of ternary supermolecules. Angew Chem Int Ed, 2001, 40: 3240–3242

    Article  Google Scholar 

  17. Wang L, Xu LY, Xue RF, Lu XF, Chen RX, Tao XT. Cocrystallization of N-donor type compounds with 5-sulfosalicylic acid: The effect of hydrogen-bonding supramolecular architectures. Sci China Chem, 2012, 55: 138–144

    Article  CAS  Google Scholar 

  18. Dale SH, Elsegood MR, Hemmings M, Wilkinson AL. The co-crystallisation of pyridine with benzenepolycarboxylic acids: The interplay of strong and weak hydrogen bonding motifs. CrystEngComm, 2004, 6: 207–241

    Article  CAS  Google Scholar 

  19. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des, 2009, 9: 1106–1123

    Article  CAS  Google Scholar 

  20. Bowers JR, Hopkins GW, Yap GPA, Wheeler KA. Structural consequences of strong and weak interactions to binary benzoic acid/bipyridine supramolecular assemblies. Cryst Growth Des, 2005, 5: 727–736

    Article  CAS  Google Scholar 

  21. Bhogala BR, Nangia A. Cocrystals of 1,3,5-cyclohexanetricarboxylic acid with 4,4′-bipyridine homologues: Acid…pyridine hydrogen bonding in neutral and ionic complexes. Cryst Growth Des, 2003, 3: 547–554

    Article  CAS  Google Scholar 

  22. Arora KK, Pedireddi VR. A rational study of crystal engineering of supramolecular assemblies of 1,2,4,5-benzenetetracarboxylic acid. J Org Chem, 2003, 68: 9177–9185

    Article  CAS  Google Scholar 

  23. Aakeröy CB, Beatty AM, Helfrich BA. “Total synthesis” supramolecular style: design and hydrogen-bond-directed assembly of ternary supermolecules. Angew Chem Int Ed, 2001, 40: 3240–3242

    Article  Google Scholar 

  24. Zaworotko MJ. Superstructural diversity in two dimensions: Crystal engineering of laminated solids. Chem Commun, 2001, 1: 1–9

    Article  Google Scholar 

  25. Yin Z, Zeng YH. Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. Sci China Chem, 2011, 54: 1371–1394

    Article  CAS  Google Scholar 

  26. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular metal-organic frameworks and application in methane storage. Science, 2002, 295: 469–472

    Article  CAS  Google Scholar 

  27. Zhong DC, Lu TB. Porous coordination polymers based on three planar rigid ligands. Sci China Chem, 2011, 54: 1395–1406

    Article  CAS  Google Scholar 

  28. Aakeröy CB, Desper J, Leonard B, Urbina JF. Toward high-yielding supramolecular synthesis: directed assembly of ditopic imidazoles/benzimidazoles and Dicarboxylic acids into cocrystals via selective O-H…N hydrogen bonds. Cryst Growth Des, 2005, 5: 865–873

    Article  Google Scholar 

  29. Cui GH, Li JR., Tian JL, Bu XH, Batten SR. Multidimensional metal-organic frameworks constructed from flexible bis(imidazole) ligands. Cryst Growth Des, 2005, 5: 1775–1780

    Article  CAS  Google Scholar 

  30. Dobrzanska L, Lloyd GO, Raubenheimer HG, Barbour LJ. A discrete metallocyclic complex that retains its solvent-templated channel structure on guest removal to yield a porous, gas sorbing material. J Am Chem Soc, 2005, 127: 13134–13135

    Article  CAS  Google Scholar 

  31. Ji BM, Deng DS, Ma N, Miao SB, Yang XG, Ji LG, Du M. Multicomponent hydrogen-bonding salts constructed from tris(2-benzimidazylmethyl)amine and various carboxylic acids: Role of benzimidazoliumcarboxylate supramolecular heterosynthons on network assembly. Cryst Growth Des, 2010, 10: 3060–3069

    Article  CAS  Google Scholar 

  32. Trivedi DR, Ballabh A, Dastidar P. Supramolecular assemblies in salts and co-crystals of imidazoles with dicarboxylic acids. CrystEngComm, 2003, 5: 358–367

    Article  Google Scholar 

  33. Murata T, Morita Y, Yakiyama YM, Yamamoto Y, Yamada S, Nishimura Y, Nakasuji K. Hydrogen-Bond architectures of protonated 4,4′-biimidazolium derivatives and oligo(imidazolium)s in charge-transfer salts with tetracyanoquinodimethane. Crys Growth Des, 2008, 8: 3058–3065

    Article  CAS  Google Scholar 

  34. Akutagawa T, Hasegawa T, Nakamura T, Inabe T, Saito G. Coupled protonic and electronic conduction in the molecular conductor [2-(2-1H-benzimidazolyl)-1H-benzimidazolium]-TCNQ. Chem Eur J, 2002, 8: 4402–4411

    Article  CAS  Google Scholar 

  35. Akutagawa T, Hasegawa T, Nakamura T, Saito G. Hydrogen-Bonded supramolecular (2,2’-bi-1H-benzimidazole)(2-(2-1H-benzimidaz-olyl)-1H-benzimidazolium+)2(Cl-) as an electron donor in a TCNQ complex. CrystEngComm, 2003, 5: 54–57

    Article  CAS  Google Scholar 

  36. Aakeröy CB, Rajbanshi A, Li Z, Desper J. Mapping out the synthetic landscape for re-crystallization, co-crystallization and salt formation. CrystEngComm, 2010, 12: 4231–4239

    Article  Google Scholar 

  37. Trivedi DR, Ballabh A, Dastidar P. Supramolecular assemblies in salts and co-crystals of imidazoles with dicarboxylic acids. CrystEngComm, 2003, 5: 358–367

    Article  Google Scholar 

  38. SAINT Software Reference Manual, Bruker AXS: Madison, WI, 1998

  39. Sheldrick GM. SHELXTL NT Version 5.1. Program for solution and refinement of crystal structure: University of Gottingen, Germany, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or YuanXiang Gu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhao, L., Liu, M. et al. Multi-component hydrogen-bonding salts formed between imidazole and aromatic acids: Synthons cooperation and crystal structures. Sci. China Chem. 55, 2115–2122 (2012). https://doi.org/10.1007/s11426-012-4555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4555-4

Keywords

Navigation