Skip to main content
Log in

A new approach to the bicyclo[3.3.1]nonane framework of huperzine A-like molecules via palladium-catalyzed intramolecular γ-arylation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In our synthetic studies toward huperzine A, a diastereoselective α′-alkylation of the α-amido-γ-methyl hexenone 4 was realized through a dianion intermediate which significantly enhanced the reactivity. Under the attempted Heck reaction conditions, an unexpected and unprecedented palladium-catalyzed intramolecular γ-arylation of 3 was observed, which generated 18 with bicyclo[3.3.1]nonane framework in satisfactory yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J-S, Zhu Y-L, Yu C-M, Zhou Y-Z, Han Y-Y, Wu F-W, Qi B-F. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem, 1986, 64: 837–839

    Article  CAS  Google Scholar 

  2. For the establishment of the identity of huperzine A with selagine, which was first isolated in 1960, see: (b) Ayer WA, Browne LM, Orszanska H, Valenta Z, Liu J-S. Alkaloids of Lycopodium selago. On the identity of selagine with huperzine A and the structure of a related alkaloid. Can J Chem, 1989, 67: 1538–1540

    Article  CAS  Google Scholar 

  3. For reviews on the chemistry and biology of huperzine A, see: (a) Kozikowski AP, Tückmantel W. Chemistry, pharmacology, and clinical efficacy of the Chinese nootropic agent Huperzine A. Acc Chem Res, 1999, 32: 641–650

    Article  CAS  Google Scholar 

  4. Bai D. Development of huperzine A and B for treatment of Alzheimer’s disease. Pure Appl Chem, 2007, 79: 469–479

    Article  CAS  Google Scholar 

  5. Selected examples: (a) Qia LJR. A total synthesis of (±)-huperzine A. Tetrahedron Lett, 1989, 30: 2089–2090

    Article  Google Scholar 

  6. Xia Y, Kozikowski A P. A practical synthesis of the Chinese “Nootropic” agent Huperzine A: A possible lead in the treatment of Alzheimer’s disease. J Am Chem Soc, 1989, 111: 4116–4117

    Article  CAS  Google Scholar 

  7. Yamada F, Kozikowski AP, Reddy ER, Pang Y-P, Miller JH, McKinney M. A route to optically pure (−)-Hupuzine A: molecular modeling and in vitro pharmacology. J Am Chem Soc, 1991, 113: 4695–4696

    Article  CAS  Google Scholar 

  8. Kozikowski AP, Campiani G, Aagaard P, McKinney M. An improved synthetic route to Huperzine A: New analogues and their inhibition of acetylcholinesterase. J Chem Soc, Chem Commun, 1993: 860–862

  9. Kaneko S, Yoshino T, Katoh T, Terashima S. An enantioselective synthesis of natural (−)-Huperzine A via cinchona alkaloids-promoted asymmetric Michael reaction. Heterocycles, 1997, 46: 27–30

    Article  CAS  Google Scholar 

  10. Kaneko S, Yoshino T, Katoh T, Terashima S. A novel enantioselective synthesis of the key intermediate of (−)-huperzine A employing asymmetric palladium-catalyzed bicycloannulation. Tetrahedron Asymm, 1997, 8: 829–832

    Article  CAS  Google Scholar 

  11. Kaneko S, Yoshino T, Katoh T, Terashima S. Synthetic studies of Huperzine A and its fluorinated analogues. 1. Novel asymmetric syntheses of an enantiomeric pair of Huperzine A. Tetrahedron, 1998, 54, 5471–5484

    Article  CAS  Google Scholar 

  12. Chassaing C, Haudrechy A, Langlois Y. Asymmetric palladium annulation: formal synthesis of (+)-huperzine A. Tetrahedron Lett, 1999, 40: 8805–8809

    Article  CAS  Google Scholar 

  13. Haudrechy A, Chassaing C, Riche C, Langlois Y. A formal synthesis of (+)-Huperzine A. Tetrahedron, 2000, 56: 3181–3187

    Article  CAS  Google Scholar 

  14. He X-C, Wang B, Yu G, Bai D. Studies on the asymmetric synthesis of huperzine A. Part 2: Highly enantioselective palldium-catalyzed bicycloannulation of the β-keto-ester using new chiral ferrocenylphosphine ligands. Tetrahedron Asymm, 2001, 12: 3213–3216

    Article  CAS  Google Scholar 

  15. Lee IYC, Jung MH, Lee HW, Yang JY. Synthesis of huperzine intermediates via Mn(III)-mediated radical cyclization. Tetrahedron Lett, 2002, 43: 2407–2409

    Article  CAS  Google Scholar 

  16. Pan Q-B, Ma D-W. Chiral guanidine catalyzed annulation to the core structure of (−)-Huperzine A. Chin J Chem, 2003, 21: 793–796

    Article  CAS  Google Scholar 

  17. Ward J, Caprio V. A radical mediated approach to the core structure of huperzine A. Tetrahedron Lett, 2006, 47: 553–556

    Article  CAS  Google Scholar 

  18. Lucey C, Kelly SA, Mann J. A concise and convergent (formal) total synthesis of huperzine A. Org Biomol Chem. 2007, 5: 301–306

    Article  CAS  Google Scholar 

  19. Ward J, Caprio V. Synthesis of the bicyclo[3.3.1]nonane core of Huperzine A and novel pyridine-fused tricycles by cyclisation of pyridine-based radicals. Heterocycles, 2009, 79: 791–804

    Article  CAS  Google Scholar 

  20. Koshiba T, Yokoshima S, Fukuyama T. Total synthesis of (−)-Huperzine A. Org Lett, 2009, 11: 5354–5356

    Article  CAS  Google Scholar 

  21. Sun B-F, Wang C-L, Ding R, Xu J-Y, Lin G-Q. Concise approach to the core of englerin A via an organocatalytic [4+3] cycloaddition reaction. Tetrahedron Lett, 2011, 52: 2155–2158

    Article  CAS  Google Scholar 

  22. Sun B, Xu X. Stereospecific rearrangement of α-hydroxyepoxide: efficient approach to the trans-bicyclo[9.3.0]tetradecane core en route to clavulactone. Tetrahedron Lett, 2006, 47: 299–302

    Article  CAS  Google Scholar 

  23. Sun B, Xu X. General synthetic approach to bicyclo[9.3.0]tetradecenone: A versatile intermediate to clavulactone and clavirolides. Tetrahedron Lett, 2005, 46: 8431–8434

    Article  CAS  Google Scholar 

  24. Mann et al. had employed a similar strategy on a different substrate in their racemic formal synthesis of huperzine A. See ref. [3n]

  25. For an excellent example of traceless stereochemical guidance, see: Zhang Y, Danishefsky SJ. Total synthesis of (±)-Aplykurodinone-1: Traceless stereochemical guidance. J Am Chem Soc, 2010, 132: 9567–9569

    Article  CAS  Google Scholar 

  26. Avery MA, Chong WKM, Jennings-White C. Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc, 1992, 114: 974–979

    Article  CAS  Google Scholar 

  27. For a review on β-iodo carbonyl compounds in Pd-catalyzed cross-coupling reactions, see: Negishi E. Novel and selective α-substitution of ketones and other carbonyl compounds based on Pd-catalyzed cross coupling of α,β-unsaturated carbonyl derivatives containing a-halogen or α-metal groups. J Organomet Chem, 1999, 576: 179–194

    Article  CAS  Google Scholar 

  28. Guram A. S, Rennels RA, Buchwald SL. A simple catalytic method for the conversion of aryl bromides to arylamines. Angew Chem, Int Engl, 1995, 34: 1348–1350

    Article  CAS  Google Scholar 

  29. Louie J, Hartwig JF. Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Lett, 1995, 36: 3609–3612

    Article  CAS  Google Scholar 

  30. For a copper-catalyzed Buchwald coupling reaction using α-iodo-α,β-unsaturated ketone as the substrate, see: (a) Focken T, Charette AB. Stereoselective synthesis of pyridinones: application to the synthesis of (−)-Barrenazines. Org Lett, 2006, 8: 2985–2988

    Article  CAS  Google Scholar 

  31. For relevant reactions employing aryl triflates, see: (b) Hicks FA, Brookhart M. Synthesis of 2-anilinotropones via palladium-catalyzed amination of 2-triflatotropone. Org Lett, 2000, 2: 219–221

    Article  CAS  Google Scholar 

  32. Farard J, Logé C, Pfeiffer B, Lesur B, Duflos M. A convenient synthesis of 5-arylamino-4H-pyran-4-ones using palladium-catalyzed amination. Tetrahedron Lett, 2009, 50: 5729–5732

    Article  CAS  Google Scholar 

  33. Kelly SA, Foricher Y, Mann J, Bentley JM. A convergent approach to huperzine A and analogues. Org Biomol Chem, 2003, 1: 2865–2876

    Article  CAS  Google Scholar 

  34. The stereochemistry was elucidated via the X-ray structure of 17 obtained through the addition reaction of 14 with Grignard reagent

  35. For examples of N,C-dianion alkylations, see: (a) Thompson ME. α,N-alkanesulfonamide dianions: formation and chemoselective C-alkylation. J Org Chem, 1984, 49: 1700–1703

    Article  CAS  Google Scholar 

  36. Watanabe H, Hauser CR. Metalation at methyl group of N-substituted o-toluenesulfonamides by excess n-butyllithium. condensation with benzophenone. J Org Chem, 1968, 33: 4278–4279

    Article  CAS  Google Scholar 

  37. Lee J, Zhong Y-L, Reamer RA, Askin D. Practical synthesis of sultams via sulfonamide dianion alkylation: Application to the synthesis of chiral sultams. Org Lett, 2003, 5: 4175–4177

    Article  CAS  Google Scholar 

  38. See Supporting Information for details

  39. For an alternative access to 1-methylbicyclo[3. 3.1]nonane skeleton via a Mn(III)-based oxidative free radical cyclization, see: Snider B. B, Cole BM. Mn(III)-based oxidative free radical cyclization of unsaturated ketones. J Org Chem, 1995, 60: 5376–5377

    Article  CAS  Google Scholar 

  40. We reasoned that if racemization was intervening, α′-epi-3 should also be capable of generating 18. This was exactly what we observed. When α′-epi-3 3 was subjected to the identical reaction conditions, product 18 was obtained in comparable yield

  41. For selected examples, see: (a) Liu Y, Li D, Park C-M. Stereoselective synthesis of highly substituted enamides by an oxidative Heck reaction. Angew Chem, Int Ed, 2011, 50: 7333–7336

    Article  CAS  Google Scholar 

  42. Zhang H, Ferreira EM, Stoltz BM. Direct oxidative Heck cyclizations: Intramolecular Fujiwara-Moritani arylations for the synthesis of functionalized benzofurans and dihydrobenzofurans. Angew Chem, Int Ed, 2004, 43: 6144–6148

    Article  CAS  Google Scholar 

  43. Garg NK, Caspi DD, Stoltz BM. The total synthesis of (+)-dragmacidin F. J Am Chem Soc, 2004, 126: 9552–9553

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BingFeng Sun or GuoQiang Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, R., Lu, Y., Yao, H. et al. A new approach to the bicyclo[3.3.1]nonane framework of huperzine A-like molecules via palladium-catalyzed intramolecular γ-arylation. Sci. China Chem. 55, 1097–1100 (2012). https://doi.org/10.1007/s11426-011-4480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4480-y

Keywords

Navigation