Skip to main content
Log in

InCl3-mediated intramolecular Friedel-Crafts-type cyclization and its application to construct the [6-7-5-6] tetracyclic scaffold of liphagal

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A unified strategy toward the construction of the [5.7.6]tricyclic skeleton of liphagal is reported, featuring InCl3-mediated intramolecular Friedel-Crafts-type cyclization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marion F, Williams DE, Patrick BO, Hollander I, Mallon R, Kim SC, Roll DM, Feldberg L, Soest RV, Andersen RJ. Liphagal, a selective inhibitor of PI3 kinase α isolated from the sponge Aka coralliphaga: Structure elucidation and biomimetic synthesis. Org Lett, 2006, 8: 321–324

    Article  CAS  Google Scholar 

  2. Sundstrom TJ, Anderson AC, Wright DL. Inhibitors of phosphoinositide-3-kinase: A structure-based approach to understanding potency and selectivity. Org. Biomol. Chem. 2009, 7: 840–850

    Article  CAS  Google Scholar 

  3. Knight ZA, Shokat KM. 3rd focused meeting on PI3K signalling and diseas. Biochem Soc Trans, 2007, 35: 245–249

    Article  CAS  Google Scholar 

  4. Rommel C, Camps MH, Ji H. PI3Kδ and PI3KΓ: Partners in ccrime in inflammation in rheumatoid arthritis and beyond. Nat Rev Immunol, 2007, 8: 191–201

    Article  Google Scholar 

  5. Lu Y, Wang H, Mills GB. Targeting PI3K-AKT pathway for cancer therapy. Rev Clin Exp Hematol, 2003, 7: 205–228

    CAS  Google Scholar 

  6. Cantley LC. The phosphoinositide 3-kinase pathway. Science, 2002, 296: 1655–1657

    Article  CAS  Google Scholar 

  7. Engelman JA, Luo J. Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 2006, 7: 606–619

    Article  CAS  Google Scholar 

  8. Ward SG, Finan P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr Opin Pharmacol, 2003, 3: 426–434

    Article  CAS  Google Scholar 

  9. Ward S, Sotsios Y, Dowden J, Bruce I, Finan P. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chem Biol, 2003, 10: 207–213

    Article  CAS  Google Scholar 

  10. Pereira AR, Strangman WK, Marion F, Feldberg L, Roll D, Hollander I, Anderson RJ. Synthesis of phosphatidylinositol 3-kinase (PI3K) inhibitory analogues of the sponge meroterpenoid liphagal. J Med Chem, 2010, 53: 8523–8533

    Article  CAS  Google Scholar 

  11. Mehta G, Likhite NS, Kumar CSA. A concise synthesis of the bioactive meroterpenoid natural product (±)-liphagal, a potent PI3K inhibitor. Tetrahedron Lett, 2009, 50: 5260–5262

    Article  CAS  Google Scholar 

  12. Alvarez-Manzaneda E, Chahboun R, Alvarez E, Cano MJ, Haidour A, AlRachid C, Esteban A, Ma JC, Ali H, Alvarez-Manzaneda R. Enantioselective total synthesis of the selective PI3 kinase inhibitor liphagal. Org Lett, 2010, 12: 4450–4453

    Article  CAS  Google Scholar 

  13. Mehta G, Likhite NS, Kumar CSA. A concise synthesis of the bioactive meroterpenoid natural product (±)-liphagal, a potent PI3K inhibitor. Tetrahedron Lett, 2009, 50: 5260–5262

    Article  CAS  Google Scholar 

  14. George JH, Baldwin JE, Adington RM. Enantiospecific, biosynthetically inspired formal total synthesis of (+)-liphagal. Org Lett, 2010, 12: 2394–2397

    Article  CAS  Google Scholar 

  15. Day JJ, McFadden RM, Virgil SC, Kolding H, Alleva JL, Stoltz BM. The catalytic enantioselective total synthesis of (+)-liphagal. Angew Chem Int Ed, 2011, 50: 6814–6818

    Article  CAS  Google Scholar 

  16. Reviews for indium Lewis acids: (a) Frost CG, Chauhan KK. Advances in indium-catalysed organic synthesis. J Chem Soc Perkin Trans 1, 2000, 3015–3019

  17. Fringuelli F, Piermatti O, Pizzo F, Vaccaro L. A C 2-chiral bis(amidinium) catalyst for a Diels-Alder reaction constituting the key step of the Quinkert-Dane estrone synthesis. Curr Org Chem, 2003, 7: 1661–1664

    Article  CAS  Google Scholar 

  18. Frost CG, Hartley JP. Supramolecular chemistry of carbohydrate clusters with cores having guest binding abilities. Org Chem, 2004, 1: 1–14

    CAS  Google Scholar 

  19. Montaignac B, Vitale MR, Michelet V, Ratovelomanana-Vidal V. Combined InCl3- and amine-catalyzed intramolecular addition of α-disubstituted aldehydes onto unactivated alkynes. Org Lett, 2010, 12: 2582–2585

    Article  CAS  Google Scholar 

  20. Cook GR, Hayashi R. Atom transfer cyclization catalyzed by InCl3 via halogen activation. Org Lett, 2006, 8: 1045–1048

    Article  CAS  Google Scholar 

  21. Hayashi R, Cook, GR. Remarkably mild and efficient intramolecular Friedel-Crafts cyclization catalyzed by In(III). Org Lett, 2007, 9: 1311–1314

    Article  CAS  Google Scholar 

  22. Lavilla R, Bernabeu MC, Carranco I, Luis Diaz J. Dihydropyridine-based multicomponent reactions. Efficient entry into new tetrahydroquinoline systems through Lewis acid-catalyzed formal [4+2] cycloadditions. Org Lett, 2003, 5: 717–720

    Article  CAS  Google Scholar 

  23. Miles RB, Davis CE, Coates RM. Syn- and anti-selective prins cyclizations of δ,ɛ-unsaturated ketones to 1,3-halohydrins with Lewis acids. J Org Chem, 2006, 71: 1493–1501

    Article  CAS  Google Scholar 

  24. Yamabe S, Minato T. A three-center orbital interaction in the Diels-Alder reactions catalyzed by Lewis acids. J Org Chem, 2000, 65: 1830–1841

    Article  CAS  Google Scholar 

  25. Yadav JS, Abraham S, Reddy BVS, Sabitha G. Addition of pyrroles to electron deficient olefins employing InCl3. Tetrahedron Lett, 2001, 42: 8063–8065

    Article  CAS  Google Scholar 

  26. Bandini M, Cozzi PG, Giacomini M, Melchiorre P, Selva S, Umani-Ronchi A. InBr3-catalyzed Friedel-Crafts addition of indoles to chiral aromatic epoxides: A facile route to eenantiopure indolyl derivatives. J Org Chem, 2002, 67: 5386–5389

    Article  CAS  Google Scholar 

  27. Bandini M, Melchiorre P, Melloni A, Umani-Ronchi A. A practical indium tribromide catalysed addition of indoles to nitroalkenes in aqueous media. Synthesis, 2002, 1110–1114

  28. Tsuchimoto T, Maeda T, Shirakawa E, Kawakami Y. Friedel-Crafts alkenylation of arenes using alkynes catalysed by metal trifluoromethanesulfonates. Chem Commun, 2000, 1573–1574

  29. Giera DS, Schneider C. InCl3-catalyzed allylic Friedel-Crafts reactions toward the stereocontrolled synthesis of 1,2,3,4-tetrahydroquinolines. Org Lett, 2010, 12: 4884–4887

    Article  CAS  Google Scholar 

  30. Hu Y, Zhang Y, Yang Z, Fathi R. Palladium-catalyzed carbonylative annulation of o-alkynylphenols: Syntheses of 2-substituted-3-aroyl-benzo[b]furans. J Org Chem, 2002, 67: 2365–2368

    Article  CAS  Google Scholar 

  31. Nan Y, Miao H, Yang Z. A new complex of palladium-thiourea and carbon tetrabromide catalyzed carbonylative annulation of o-hydroxy-phenylacetylenes: efficient new synthetic technology for the synthesis of 2,3-disubtituted benzo[b]furans. Org Lett, 2000, 2: 297–300

    Article  CAS  Google Scholar 

  32. Oka T, Murai A. synthetic studies on ciguatoxin [1]; Construction of the spiro acetal part (C46-C55). Tetrahedron, 1998, 54: l–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Tian, L., Li, Z. et al. InCl3-mediated intramolecular Friedel-Crafts-type cyclization and its application to construct the [6-7-5-6] tetracyclic scaffold of liphagal. Sci. China Chem. 55, 36–42 (2012). https://doi.org/10.1007/s11426-011-4454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4454-0

Keywords

Navigation