Skip to main content
Log in

Size-controlled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chalcopyrite ternary CuInS2 semiconductor nanocrystals have been synthesized via a facile one-pot chemical approach by using oleylamine and oleic acid as solvents. The as-prepared CuInS2 nanocrystals have been characterized by instrumental analyses such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM)/high-resolution TEM (HRTEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption spectroscopy (UV-vis) and photoluminescence (PL) spectroscopy. The particle sizes of the CuInS2 nanocrystals could be tuned from 2 to 10 nm by simply varying reaction conditions. Oleylamine, which acted as both a reductant and an effective capping agent, plays an important role in the size-controlled synthesis of CuInS2 nanocrystals. Based on a series of comparative experiments under different reaction conditions, the probable formation mechanism of CuInS2 nanocrystals has been proposed. Furthermore, the UV-vis absorption and PL emission spectra of the chalcopyrite CuInS2 nanocrystals have been found to be adjustable in the range of 527–815 nm and 625–800 nm, respectively, indicating their potential application in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gur I, Fromer NA, Geier ML, Alivisatos AP. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310: 462–465

    Article  CAS  Google Scholar 

  2. Xiao JP, Xie Y, Xiong YJ, Tang R, Qian YT. A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1−x )2 nanocrystallites. J Mater Chem, 2001, 11: 1417–1420

    Article  CAS  Google Scholar 

  3. Xu XQ, Xu G. Electrochemical impedance spectra of CdSe quantume dots sensitized nano-crystalline TiO2 solar cells. Sci China Chem, 2011, 54: 205–210

    Article  CAS  Google Scholar 

  4. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x )Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J Am Chem Soc, 2008, 130: 16770–16777

    Article  CAS  Google Scholar 

  5. Birkmire RW, Eser E. Polycrstalline thin film solar cells: present status and future potential. Annu Rev Mater Sci, 1997, 27: 625–653

    Article  CAS  Google Scholar 

  6. Klenk R, Klaer J, Scheer R, Lux-Steiner MC, Luck I, Meyer N, Rühle U. Solar cells based on CuInS2-an overview. Thin Solid Films, 2005, 480–481: 509–514

    Article  Google Scholar 

  7. Chen GB, Wang L, Sheng X, Liu HJ, Pi XD, Yang DR. Chemical synthesis of Cu(In) metal inks to prepare CuInS2 thin films and solar cells. J Alloys Compd, 2010, 507: 317–321

    Article  CAS  Google Scholar 

  8. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF. Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem Mater, 2003, 15: 3142–3147

    Article  CAS  Google Scholar 

  9. Jiang Y, Wu Y, Mo X, Yu WC, Xie Y, Qian YT. Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E = S, Se) nanorods. Inorg Chem, 2000, 39: 2964–2965

    Article  CAS  Google Scholar 

  10. Xie RG, Rutherford M, Peng XG. Formation of high-quality I–III–VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc, 2009, 131: 5691–5697

    Article  CAS  Google Scholar 

  11. Li TL, Teng HJ. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J Mater Chem, 2010, 20: 3656–3664

    Article  CAS  Google Scholar 

  12. Yang YA, Wu HM, Williams KR, Cao YC. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem Int Ed, 2005, 44: 6712–6715

    Article  CAS  Google Scholar 

  13. Gou XL, Cheng FY, Shi YH, Zhang L, Peng SJ, Chen J, Shen PW. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J Am Chem Soc, 2006, 128: 7222–7229

    Article  CAS  Google Scholar 

  14. Peng SJ, Liang J, Zhang L, Shi YH, Chen J. Shape-controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures. J Cryst Growth, 2007, 305: 99–103

    Article  CAS  Google Scholar 

  15. Peng SJ, Cheng FY, Liang J, Tao ZL, Chen J. Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. J Alloys Compd, 2009, 481: 786–791

    Article  CAS  Google Scholar 

  16. Cheng FY, Shen J, Peng B, Pan YD, Tao ZL, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem, 2011, 3: 79–84

    Article  CAS  Google Scholar 

  17. Courtel FM, Paynter RW, Marsan B, Morin M. Synthesis, characterization, and growth mechanism of n-type CuInS2 colloidal particles. Chem Mater, 2009, 21: 3752–3762

    Article  CAS  Google Scholar 

  18. Zhong HZ, Zhou Y, Ye MF, He YJ, Ye JP, He C, Yang CH, Li YF. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater, 2008, 20: 6434–6443

    Article  CAS  Google Scholar 

  19. Ma H, Zhang SY, Ji WQ, Tao ZL, Chen J. α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J Am Chem Soc, 2008, 130: 5361–5367

    Article  CAS  Google Scholar 

  20. Chen LJ, Liao JD, Chuang YJ, Fu YS, Synthesis and characterization of Cu(InxB1−x )Se2 nanocrystals for low-cost thin film photovoltaics. J Am Chem Soc, 2011, 133: 3704–3707

    Article  CAS  Google Scholar 

  21. Pan DC, Wang XL, Zhou ZH, Chen W, Xu CL, Lu YF. Synthesis of quaternary semiconductor nanocrystals with tunable band gaps. Chem Mater, 2009, 21: 2489–2493

    Article  CAS  Google Scholar 

  22. Nguyen TD, Dinh CT, Nguyen DT, Do TO. A novel approach for monodisperse samarium orthovanadate nanocrystals: controlled synthesis and characterization. J Phys Chem C, 2009, 113: 18584–18595

    Article  CAS  Google Scholar 

  23. Casula MF, Jun YW, Zaziski DJ, Chan EM, Corrias A, Alivisatos AP. The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. J Am Chem Soc, 2006, 128: 1675–1682

    Article  CAS  Google Scholar 

  24. Zhao F, Sun HL, Su G, Gao S. Synthesis and size-dependent magnetic properties of monodisperse EuS nanocrystals. Small, 2006, 2: 244–248

    Article  CAS  Google Scholar 

  25. Kuo KT, Hu SH, Liu DM, Chen SY. Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions. J Mater Chem, 2010, 20: 1744–1750

    Article  CAS  Google Scholar 

  26. Trindade T, O’Brien P, Pickett NL. Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater, 2001, 13: 3843–3858

    Article  CAS  Google Scholar 

  27. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem, 1986, 90: 2555–2560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Liang, Y., Cheng, F. et al. Size-controlled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization. Sci. China Chem. 55, 1236–1241 (2012). https://doi.org/10.1007/s11426-011-4426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4426-4

Keywords

Navigation