Skip to main content
Log in

Electrochemical impedance spectra of CdSe quantume dots sensitized nanocrystalline TiO2 solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Quantum dots sensitized nanocrystalline TiO2 solar cells (QDSSCs) are promising third-generation photovoltaic devices. In comparison with conventional dye-sensitized solar cells (DSSCs), the efficiency of QDSSCs is still very low (about 3%). In this paper, the electrochemical impedance spectroscopy technology has been adopted to investigate the quasi-Fermi level and the carrier dynamics of the colloidal CdSe QDs sensitized TiO2 eletrode with S2−/S x redox electrolytes and the series resistance of the QDSSCs. In comparison with the conventional DSSCs with Γ −3/Γ as redox electrolytes, the energy difference between the conduction band edge and the quasi-Fermi levels of the TiO2 films (or the Fermi levels of the redox electrolytes) in QDSSCs has been decreased by about 0.3 V, resulting in the decrease of V oc by this value. The increases of the electrolyte diffussion resistance and the charge transfer resistance between Pt counter electrodes and S2−/S x redox electrolytes were attributed to the decrease of the fill factors. However, the electron lifetime and electron diffussion length for QDSSCs are longer than those for DSSCs due to the retardation of the electron recombination by the adsorbed cysteine at the surfaces of the TiO2 films. It is indicated that electron recombination at the TiO2/electrolyte interface is not the main reason for the lower J sc of the colloidal QDs sensitized QDSSCs. Improving light harvesting efficiency and photoelectron injection efficiency should be considered in the future for such kind of QDSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  2. Bisquert J. Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys, 2008, 10: 49–72

    Article  CAS  Google Scholar 

  3. Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shui D, Gao F, Wang P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J Phys Chem C, 2009, 113: 6290–6297

    Article  CAS  Google Scholar 

  4. Ning ZJ, Tian H, Triarylamine: a promising core unit for efficient photovoltaic materials. ChemComm, 2009, 5483-5495

  5. Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C, 2008, 112: 18737–18753

    CAS  Google Scholar 

  6. Yu W, Qu LH, Guo WZ, Peng XG. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater, 2003, 15: 2854–2860

    Article  CAS  Google Scholar 

  7. Nozik AJ. Quantum dot solar cells. Physica E, 2002, 14: 115–120

    Article  CAS  Google Scholar 

  8. Klimov VI. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion. J Phys Chem B, 2006, 110: 16827–16845

    Article  CAS  Google Scholar 

  9. Diguna LJ, Shen Q, Kobayashi J, Toyoda T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett, 2007, 91: 023116

    Article  Google Scholar 

  10. Giménez S, Mora-Seró I, Macor L, Guijarro N, Lana-Villarreal T, Gómez R, Diguna LJ, Shen Q, Toyoda T, Bisquert J. Improving the performance of colloidal quantum-dot-sensitized solar cells. J Nanotechnology, 2009, 20: 295204

    Article  Google Scholar 

  11. Mora-Seró I, Giménez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gómez R, Bisquert J. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. J Nanotechnology, 2008, 19: 424007

    Article  Google Scholar 

  12. Wang Q, Pan D, Jiang S, Ji X, An L, Jiang B. A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals. J Cryst Growth, 2006, 286: 83

    Article  CAS  Google Scholar 

  13. Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Quin S, Toyoda T, Bisquert J. Recombination in quantum dot sensitized solar cells. Accounts Chem Res, 2009, 42: 1848–1857

    Article  Google Scholar 

  14. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloob G, Hagfeldt A. Impedance spectroscopy study of the influence of electrolyte conditions in parameters of transport and recombination in dye-sensitized solar cells. Sol Energy Mater Sol Cells, 2005, 87: 117–131

    Article  CAS  Google Scholar 

  15. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F. Doubling exponent models for the analysis of porous film electrodes by impedance, relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B, 2000, 104: 2287–2298

    Article  CAS  Google Scholar 

  16. Bisquert J. Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B, 2002, 106: 325–333

    Article  CAS  Google Scholar 

  17. Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Grätzel M. Electron transport and recombination in solid state dye solar cell with spiro-OMeTAD as hole conductor. J Am Chem Soc, 2009, 131: 558–562

    Article  CAS  Google Scholar 

  18. Bisquert J. Chemical capacitance of nanostructured semiconductors: Its origin and significance for nanocomposite solar cells. J Phys Chem Chem Phys, 2003, 5: 5360–5364

    CAS  Google Scholar 

  19. Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Bisquert J. Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B, 2003, 107: 758–768

    Article  CAS  Google Scholar 

  20. Bisquert J, Vikhrenko VS. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B, 2004, 108: 2313–2322

    Article  CAS  Google Scholar 

  21. Fabregat-Santiago F, Garcia-Canadas J, Palomares E, Clifford JN, Haque SA, Durrant JR, Garcia-Belmonte G, Bisquert J. The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J Appl Phys, 2004, 96: 6903–6907

    Article  CAS  Google Scholar 

  22. Wang Q, Ito S, Grätze M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H. Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B, 2006, 110: 25210–25221

    Article  CAS  Google Scholar 

  23. Fabregat-Santiago F, Bisquert J, Palomares E. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C, 2007, 111: 6550–6560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XueQing Xu or Gang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Xu, G. Electrochemical impedance spectra of CdSe quantume dots sensitized nanocrystalline TiO2 solar cells. Sci. China Chem. 54, 205–210 (2011). https://doi.org/10.1007/s11426-010-4170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4170-1

Keywords

Navigation