Skip to main content
Log in

Cation and anion substitution effects on the ultrafast dynamics of interionic interaction in imidazolium based ionic liquids

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Room-temperature Ionic Liquids (ILs) have numerous unique properties that differ from those of conventional molecular solvents. Although the unique properties of ILs have been suggested to origin from their microscopic interionic interaction, detailed dynamics of interionic interaction of ILs has not been fully understood. Here, with the Femtosecond Optical Heterodyne-Detected Raman Induced Kerr Effect Spectroscopy (fs-OHD-RIKES), we measured the ultrafast dynamics of the interionic interaction of three typical imidazolium based ILs, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), and 1-decyl-3-methylimidazolium tetrafluoroborate ([dmim][BF4]). We observed several periods of subpicosecond oscillation in their fs-OHD-RIKES signals. Through decomposing their fs-OHD-RIKES signals into four Brownian oscillators in time domain, we explored the cation and anion substitution effects on the ultrafast dynamics of interionic interaction of ILs. We found that the cation substitution affected all the low frequency motions we observed, while the anion substitution only affected the two higher low frequency motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev, 1999, 99: 2071–2083

    Article  CAS  Google Scholar 

  2. Hapiot P, Lagrost C. Electrochemical reactivity in room-temperature ionic liquids. Chem Rev, 2008, 108: 2238–2264

    Article  CAS  Google Scholar 

  3. Berthod A, Ruiz-Angel M, Carda-Broch S. Ionic liquids in separation techniques. J Chromatogr A, 2008, 1184: 6–18

    Article  CAS  Google Scholar 

  4. Torimoto T, Tsuda T, Okazaki K, Kuwabata S. New frontiers in materials science opened by ionic liquids. Adv Mater, 2010, 22: 1196–1221

    Article  CAS  Google Scholar 

  5. Weingaertner H. Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew Chem Int Ed, 2008, 47: 654–670

    Article  CAS  Google Scholar 

  6. Castner EW, Wishart JF. Spotlight on ionic liquids. J Chem Phys, 2010, 132: 120901, and references therein

    Article  Google Scholar 

  7. Smith NA, Meech SR. Optically-heterodyne-detected optical Kerr effect (OHD-OKE): applications in condensed phase dynamics. Int Rev Phys Chem, 2002, 21: 75–100

    Article  CAS  Google Scholar 

  8. McMorrow D, Lotshaw WT, Kenney-Wallace GA. Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids. IEEE J Quantum Electron, 1988, 24: 443–454

    Article  Google Scholar 

  9. Lotshaw WT, McMorrow D, Thantu N, Melinger JS, Kitchenham R. Intermolecular vibtational coherence in molecular liquids. J Raman Spectrosc, 1995, 26: 571–583

    Article  CAS  Google Scholar 

  10. Zhong Q, Fourkas JT. Optical Kerr effect spectroscopy of simple liquids. J Phys Chem B, 2008, 112: 15529–15539

    Article  CAS  Google Scholar 

  11. Fecko CJ, Eaves JD, Tokmakoff A. Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy. J Chem Phys, 2002, 117: 1139–1154

    Article  CAS  Google Scholar 

  12. Hunt NT, Jaye AA, Meech SR. Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE). Phys Chem Chem Phys, 2007, 9: 2167–2180

    Article  CAS  Google Scholar 

  13. Farrer RA, Fourkas JT. Orientational dynamics of liquids confined in nanoporous sol-gel glasses studied by optical Kerr effect spectroscopy. Acc Chem Res, 2003, 36: 605–612

    Article  CAS  Google Scholar 

  14. Hunt NT, Jaye AA, Meech SR. Ultrafast dynamics in microemulsions: Optical Kerr effect study of the dispersed oil phase in a carbon disulride-dodecyltrimethylammonium bromide-water microemulsion. J Phys Chem B, 2003, 107: 3405–3418

    Article  CAS  Google Scholar 

  15. Shirota H, Castner EW. Ultrafast dynamics in aqueous polyacrylamide solutions. J Am Chem Soc, 2001, 123: 12877–12885

    Article  CAS  Google Scholar 

  16. Giraud G, Karolin J, Wynne K. Low-frequency modes of peptides and globular proteins in solution observed by ultrafast OHD-RIKES spectroscopy. Biophys J, 2003, 85: 1903–1913

    Article  CAS  Google Scholar 

  17. Cang H, Li J, Fayer MD. Orientational dynamics of the ionic organic liquid 1-ethyl-3-methylimidazolium nitrate. J Chem Phys, 2003, 119: 13017–13023

    Article  CAS  Google Scholar 

  18. Rajian JR, Li SF, Bartsch RA, Quitevis EL. Temperature-dependence of the low-frequency spectrum of 1-pentyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide studied by optical Kerr effect spectroscopy. Chem Phys Lett, 2004, 393: 372–377

    Article  Google Scholar 

  19. Shirota H, Funston AM, Wishart JF, Castner EW. Ultrafast dynamics of pyrrolidinium cation ionic liquids. J Chem Phys, 2005, 122: 184512

    Article  Google Scholar 

  20. Turton DA, Hunger J, Stoppa A, Hefter G, Thoman A, Walther M, Buchner R, Wynne K. Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr effect study: Evidence for mesoscopic aggregation. J Am Chem Soc, 2009, 131: 11140–11146

    Article  CAS  Google Scholar 

  21. Xiao D, Rajian JR, Cady A, Li SF, Bartsch RA, Quitevis EL. Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J Phys Chem B, 2007, 111: 4669–4677

    Article  CAS  Google Scholar 

  22. Xiao D, Rajian JR, Hines LG, Li SF, Bartsch RA, Quitevis EL. Nanostructural organization and anion effects in the optical Kerr effect spectra of binary ionic liquid mixtures. J Phys Chem B, 2008, 112: 13316–13325

    Article  CAS  Google Scholar 

  23. Giraud G, Gordon CM, Dunkin IR, Wynne K. The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study. J Chem Phys, 2003, 119: 464–477

    Article  CAS  Google Scholar 

  24. Shirota H, Nishikawa K, Ishida T. Atom substitution effects of [XF6](−) in ionic liquids. 1. Experimental study. J Phys Chem B, 2009, 113: 9831–9839

    Article  CAS  Google Scholar 

  25. Shirota H, Castner EW. Why are viscosities lower for ionic liquids with -CH2Si(CH3)(3) vs —CH2C(CH3)(3) substitutions on the imidazolium cations? J Phys Chem B, 2005, 109: 21576–21585

    Article  CAS  Google Scholar 

  26. Hyun BR, Dzyuba SV, Bartsch RA, Quitevis EL. Intermolecular dynamics of room-temperature ionic liquids: Femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis ((trifluoromethyl)sulfonyl)imides. J Phys Chem A, 2002, 106: 7579–7585

    Article  CAS  Google Scholar 

  27. Wang W, Lu R, Yu AC. Low frequency spectrum of ionic liquid [bmim][PF6] studied by femtosecond optically heterodyne-detected optical Kerr effect spectroscopy and low frequency Raman spectroscopy (in Chinese). Acta Phys Chim Sin, 2010, 26: 964–970

    CAS  Google Scholar 

  28. Iwata K, Okajima H, Saha S, Hamaguchi HO. Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Acc Chem Res, 2007, 40: 1174–1181

    Article  CAS  Google Scholar 

  29. Ribeiro MCC. Correlation between quasielastic Raman scattering and configurational entropy in an ionic liquid. J Phys Chem B, 2007, 111: 5008–5015

    Article  CAS  Google Scholar 

  30. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD. Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chem Commun, 1998, 1: 1765–1766

    Article  Google Scholar 

  31. Chang YJ, Castner EW. Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methylformamide in acetonitrile, dmf, and water. J Chem Phys, 1993, 99: 113–125

    Article  CAS  Google Scholar 

  32. Laurent TF, Hennig H, Ernsting NP, Kovalenko SA. The ultrafast optical Kerr effect in liquid fluoroform: An estimate of the collision-induced contribution. Phys Chem Chem Phys, 2000, 2: 2691–2697

    Article  CAS  Google Scholar 

  33. Neelakandan M, Pant D, Quitevis EL. Reorientational and intermolecular dynamics in binary liquid mixtures of hexafluorobenzene and benzene: Femtosecond optical Kerr effect measurements. Chem Phys Lett, 1997, 265: 283–292

    Article  CAS  Google Scholar 

  34. Quitevis EL, Neelakandan M. Femtosecond optical Kerr effect studies of liquid methyl iodide. J Phys Chem, 1996, 100: 10005–10014

    Article  CAS  Google Scholar 

  35. Wang Y, Ushida K, Tominaga Y, Kira A. Molecular dynamics of acetophenone and its derivatives investigated by femtosecond optical Kerr effect spectroscopy and depolarized low-frequency Raman scattering. Chem Phys Lett, 1999, 299: 576–582

    Article  CAS  Google Scholar 

  36. McMorrow D, Lotshaw WT. Dephasing and relaxation in coherently excited ensembles of intermolecular oscillators. Chem Phys Lett, 1991, 178: 69–74

    Article  CAS  Google Scholar 

  37. McMorrow D, Thantu N, Kleiman V, Melinger JS, Lotshaw WT. Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit. J Phys Chem A, 2001, 105: 7960–7972

    Article  CAS  Google Scholar 

  38. Mukamel S. Femtosecond optical spectroscopy: A direct look at elementary chemical events. Ann Rev Phys Chem, 1990, 41: 647–681

    Article  CAS  Google Scholar 

  39. Anthony JL, Maginn EJ, Brennecke JF. Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B, 2001, 105: 10942–10949

    Article  CAS  Google Scholar 

  40. Dullius JEL, Suarez PAZ, Einloft S, de Souza RF, Dupont J, Fischer J, De Cian A. Selective catalytic hydrodimerization of 1,3-butadiene by palladium compounds dissolved in ionic liquids. Organometallics, 1998, 17: 815–819

    Article  CAS  Google Scholar 

  41. Russina O, Triolo A, Gontrani L, Caminiti R, Xiao D, Hines LG, Bartsch RA, Quitevis EL, Pleckhova N, Seddon KR. Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis (trifluoromethane) sulfonylamide ionic liquids: structural and dynamic evidence of nanoscale segregation. J Phys: Condens Matter, 2009, 21: 424121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnChi Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, R., Wang, W. & Yu, A. Cation and anion substitution effects on the ultrafast dynamics of interionic interaction in imidazolium based ionic liquids. Sci. China Chem. 54, 1491–1497 (2011). https://doi.org/10.1007/s11426-011-4334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4334-7

Keywords

Navigation