Skip to main content
Log in

Supported noble metal nanoparticles as photo/sono-catalysts for synthesis of chemicals and degradation of pollutants

  • Reviews
  • Special Topic · Inorganic Solid State Chemistry and Energy Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This review summarizes the utilization of supported noble metal nanoparticles (such as Au/TiO2, Au/ZrO2, Ag/AgCl) as efficient photo/sono-catalysts for the selective synthesis of chemicals and degradation of environmental pollutants. Supported noble metal nanoparticles could efficiently catalyze the conversion of solar energy into chemical energy. Under UV/visible light irradiation, important chemical transformations such as the oxidation of alcohols to carbonyl compounds, the oxidation of thiol to disulfide, the oxidation of benzene to phenol, and the reduction of nitroaromatic compounds to form aromatic azo compounds, are effectively achieved by supported noble metal nanoparticles. Under ultrasound irradiation, supported noble metal nanoparticles could efficiently catalyze the production of hydrogen from water. Moreover, various pollutants, including aldehydes, alcohols, acids, phenolic compounds, and dyes, can be effectively decomposed over supported noble metal nanoparticles under UV/visible light irradiation. Under ultrasound irradiation, pollutant molecules can also be completely degraded with supported noble metal nanoparticles as catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL. Alternative energy technologies. Nature, 2001, 414: 332–337

    Article  CAS  Google Scholar 

  2. Collins FS, Gray GM, Bucher JR. Transforming environmental health protection. Science, 2008, 319: 906–907

    Article  CAS  Google Scholar 

  3. Davis SJ, Caldeira K, Matthews HD. Future CO2 Emissions and climate change from existing energy infrastructure. Science, 2010, 329: 1330–1333

    Article  CAS  Google Scholar 

  4. Hoffert MI. Farewell to fossil fuels? Science, 2010, 329: 1292–1294

    Article  CAS  Google Scholar 

  5. Pan X. China: A responsible country in mitigating climate change. Environ Sci Technol, 2010, 44: 7981–7981

    Article  CAS  Google Scholar 

  6. Rogelj J, Nabel J, Chen C, Hare W, Markmann K, Meinshausen M, Schaeffer M, Macey K, Hohne N. Copenhagen accord pledges are paltry. Nature, 2010, 464: 1126–1128

    Article  CAS  Google Scholar 

  7. Tada H, Kiyonaga T, Naya S-i. Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded Titanium(IV) dioxide. Chem Soc Rev, 2009, 38: 1849–1858

    Article  CAS  Google Scholar 

  8. Wang X, Caruso RA. Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J Mater Chem, 2011, 21: 20–28

    Article  Google Scholar 

  9. Min BK, Friend CM. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem Rev, 2007, 107: 2709–2724

    Article  CAS  Google Scholar 

  10. Hashmi ASK. Gold-Catalyzed Organic Reactions. Chem Rev, 2007, 107: 3180–3211

    Article  CAS  Google Scholar 

  11. Valden M, Lai X, Goodman DW. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 1998, 281: 1647–1650

    Article  CAS  Google Scholar 

  12. Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature, 2005, 437: 1132–1135

    Article  CAS  Google Scholar 

  13. Daniel M-C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2003, 104: 293–346

    Article  Google Scholar 

  14. Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund H-J. Gold supported on thin oxide films: From single atoms to nanoparticles. Acc Chem Res, 2008, 41: 949–956

    Article  CAS  Google Scholar 

  15. Li Z, Brouwer C, He C. Gold-catalyzed organic transformations. Chem Rev, 2008, 108: 3239–3265

    Article  CAS  Google Scholar 

  16. Cong H, Becker CF, Elliott SJ, Grinstaff MW, Porco JA. Silver nanoparticle-catalyzed diels-alder cycloadditions of 2′-hydroxychalcones. J Am Chem Soc, 2010, 132: 7514–7518

    Article  CAS  Google Scholar 

  17. Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 2010, 327: 319–322

    Article  CAS  Google Scholar 

  18. Hutchings GJ. Catalysis by gold. Catal Today, 2005, 100: 55–61

    Article  CAS  Google Scholar 

  19. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo M-H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed, 2008, 47: 7931–7933

    Article  CAS  Google Scholar 

  20. Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo M-H. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem-Eur J, 2009, 15: 1821–1824

    Article  CAS  Google Scholar 

  21. Arcadi A. Alternative synthetic methods through new developments in catalysis by gold. Chem Rev, 2008, 108: 3266–3325

    Article  CAS  Google Scholar 

  22. Wang Y, Zhao D, Ma W, Chen C, Zhao J. Enhanced sonocatalytic degradation of azo dyes by Au/TiO2. Environ Sci Technol, 2008, 42: 6173–6178

    Article  CAS  Google Scholar 

  23. Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev, 2007, 107: 4797–4862

    Article  CAS  Google Scholar 

  24. Yuan H, Ma W, Chen C, Zhao J, Liu J, Zhu H, Gao X. Shape and SPR Evolution of thorny gold nanoparticles promoted by silver ions. Chem Mater, 2007, 19: 1592–1600

    Article  CAS  Google Scholar 

  25. Yamada K, Miyajima K, Mafune F. Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband. J Phys Chem C, 2007, 111: 11246–11251

    Article  CAS  Google Scholar 

  26. Zhu H, Chen X, Zheng Z, Ke X, Jaatinen E, Zhao J, Guo C, Xie T, Wang D. Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Comm, 2009, 45: 7524–7526

    Article  Google Scholar 

  27. Haruta M. Size- and support-dependency in the catalysis of gold. Catal Today, 1997, 36: 153–166

    Article  CAS  Google Scholar 

  28. Li W-C, Comotti M, Schuth F. Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J Catal, 2006, 237: 190–196

    Article  CAS  Google Scholar 

  29. Soejima T, Tada H, Kawahara T, Ito S. Formation of Au nanoclusters on TiO2 surfaces by a two-step method consisting of Au(III)-complex chemisorption and its photoreduction. Langmuir, 2002, 18: 4191–4194

    Article  CAS  Google Scholar 

  30. Wang Y, Zhao D, Ji H, Liu G, Chen C, Ma W, Zhu H, Zhao J. Sonochemical hydrogen production efficiently catalyzed by Au/TiO2. J Phys Chem C, 2010, 114: 17728–17733

    Article  CAS  Google Scholar 

  31. Hidalgo MC, Maicu M, Navio JA, Colon G. Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications. J Phys Chem C, 2009, 113: 12840–12847

    Article  CAS  Google Scholar 

  32. Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev, 2004, 104: 3037–3058

    Article  CAS  Google Scholar 

  33. Zhang M, Chen C, Ma W, Zhao J. Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed., 2008, 47: 9730–9733

    Article  CAS  Google Scholar 

  34. Zhang M, Wang Q, Chen C, Zang L, Ma W, Zhao J. Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies. Angew Chem Int Ed, 2009, 48: 6081–6084

    Article  CAS  Google Scholar 

  35. Punniyamurthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev, 2005, 105: 2329–2364

    Article  CAS  Google Scholar 

  36. Chen X, Zheng Z, Ke X, Jaatinen E, Xie T, Wang D, Guo C, Zhao J, Zhu H. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem, 2010, 12: 414–419

    Article  CAS  Google Scholar 

  37. Zhai W, Xue S, Zhu A, Luo Y, Tian Y. Plasmon-driven selective oxidation of aromatic alcohols to aldehydes in water with recyclable Pt/TiO2 nanocomposites. ChemCatChem, 2011, 3: 127–130

    Article  CAS  Google Scholar 

  38. Kowalska E, Abe R, Ohtani B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) dioxide particles: Action spectrum analysis. Chem Comm, 2009, 45: 241–243

    Article  Google Scholar 

  39. Naya S-I, Inoue A, Tada H. Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium( IV) dioxide and surfactant. J Am Chem Soc, 2010, 132: 6292–6293

    Article  CAS  Google Scholar 

  40. Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc, 2005, 127: 7632–7637

    Article  CAS  Google Scholar 

  41. Naya S-I, Teranishi M, Isobe T, Tada H. Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded Titanium( IV) dioxide. Chem Comm, 2010, 46: 815–817

    Article  CAS  Google Scholar 

  42. Ide Y, Matsuoka M, Ogawa M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J Am Chem Soc, 2010, 132: 16762–16764

    Article  CAS  Google Scholar 

  43. Tanev PT, Chibwe M, Pinnavaia TJ. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 1994, 368: 321–323

    Article  CAS  Google Scholar 

  44. Shiraishi Y, Saito N, Hirai T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J Am Chem Soc, 2005, 127: 12820–12822

    Article  CAS  Google Scholar 

  45. Grirrane A, Corma A, Garcia H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science, 2008, 322: 1661–1664

    Article  CAS  Google Scholar 

  46. Ohe K, Uemura S, Sugita N, Masuda H, Taga T. Sodium arenetellurolate-catalyzed selective conversion of nitro aromatics to aromatic azoxy or azo compounds and its application for facile preparation of 3,3′- and 4,4′-bis[.beta.-(aryltelluro)vinyl]azobenzenes from (3- and 4-nitrophenyl)acetylenes. J Org Chem, 1989, 54: 4169–4174

    Article  CAS  Google Scholar 

  47. Zhu H, Ke X, Yang X, Sarina S, Liu H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew Chem Int Ed, 2010, 49: 9657–9661

    Article  CAS  Google Scholar 

  48. Suslick KS, Hammerton DA, Cline RE. Sonochemical hot spot. J Am Chem Soc, 1986, 108: 5641–5642

    Article  CAS  Google Scholar 

  49. Chen X, Zhu HY, Zhao JC, Zheng ZF, Gao XP. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chem Int Ed, 2008, 47: 5353–5356

    Article  CAS  Google Scholar 

  50. Kominami H, Tanaka A, Hashimoto K. Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on Cerium(iv) oxide powder under visible light irradiation. Chem Comm, 2010, 46: 1287–1289

    Article  CAS  Google Scholar 

  51. Rodriguez-Gonzalez V, Zanella R, del Angel G, Gomez R. MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2-Al2O3 sol-gel prepared catalysts. J Mol Catal A: Chem, 2008, 281: 93–98

    Article  CAS  Google Scholar 

  52. Li R, Chen W, Kobayashi H, Ma C. Platinum-nanoparticle-loaded bismuth oxide: An efficient plasmonic photocatalyst active under visible light. Green Chem, 2010, 12: 212–215

    Article  CAS  Google Scholar 

  53. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69–96

    Article  CAS  Google Scholar 

  54. Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev, 2010, 39: 4206–4219

    Article  CAS  Google Scholar 

  55. Hu C, Peng T, Hu X, Nie Y, Zhou X, Qu J, He H. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. J Am Chem Soc, 2009, 132: 857–862

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinCai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, B., Ma, J., Chen, C. et al. Supported noble metal nanoparticles as photo/sono-catalysts for synthesis of chemicals and degradation of pollutants. Sci. China Chem. 54, 887–897 (2011). https://doi.org/10.1007/s11426-011-4292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4292-0

Keywords

Navigation