Skip to main content
Log in

Understanding the defect chemistry of oxide nanoparticles for creating new functionalities: A critical review

  • Reviews
  • Special Topic · Inorganic Solid State Chemistry and Energy Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors, giant-dielectrics, or white light generation. Emphasis is placed on the relationships between the internal structure and defective surfaces of oxide nanoparticles and their synergy in tailoring the materials properties. This review is arranged in a sequence: (1) structural fundamentals of bulk oxides, using TiO2 as a model simple oxide to highlight the importance of polymorphs in tuning the electronic structures; (2) structural features of simple oxide nanoparticles distinct from the bulk, which show that nanoparticles can be considered as a special solid under the compression as originated from the surface defect dipole-dipole interactions; and (3) new functions achieved through extending the defect chemistry concept to the assembled architectures or multi-component oxide nanoparticles, in which defect surfaces enable the localized electrons or intermediate levels to produce giant dielectric performance or tunable light generation. It is concluded that understandings of defect chemistry provide diverse possibilities to manipulate electrons in oxide nanoparticles for functionalities in energy-relevant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goesmann H, Feldmann C. Nanoparticulate functional materials. Angew Chem In Ed, 2010, 49: 1362–1395

    CAS  Google Scholar 

  2. Yao KX, Yin XM, Wang TY, Zeng HC. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J Am Chem Soc, 2010, 132: 6131–6144

    Article  CAS  Google Scholar 

  3. Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater, 2010, 22: 2729–2742

    Article  CAS  Google Scholar 

  4. Wang T, Farvid SS, Abulikemu M, Radovanovic MV. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals. J Am Chem Soc, 2010, 132: 9250–9252

    Article  CAS  Google Scholar 

  5. Liang HW, Liu S, Yu SH. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv Mater, 2010, 22: 3925–3937

    Article  CAS  Google Scholar 

  6. Shan GB, Demopoulos GP. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets. Nanotechnol, 2010, 21: 025604

    Article  Google Scholar 

  7. Yang YF, Jin YZ, He HP, Wang QL, Tu Y, Lu HM, Ye ZZ. Dopant-induced shape evolution of colloidal nanocrystals: The case of zinc oxide. J Am Chem Soc, 2010, 132: 13381–13394

    Article  CAS  Google Scholar 

  8. Lu AH, Nitz JJ, Comotti M, Weidenthaler C, Schlichte K, Lehmann CW, Terasaki O, Schuth F. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition J Am Chem Soc, 2010, 132: 14152–14162

    Article  CAS  Google Scholar 

  9. Li GS, Li LP, Feng SH, Wang MQ, Zhang LY, Yao X. An effective synthetic route for a novel electrolyte: Nanocrystalline solid solutions of (CeO2)(1−x)(BiO1.5)(x). Adv Mater, 1999, 11: 146–149

    Article  CAS  Google Scholar 

  10. Li GS, Mao YC, Li LP, Feng SH, Wang MQ, Yao X. Solid solubility and transport properties of nanocrystalline(CeO2)(1−x)(BiO1.5)(x) by hydrothermal conditions. Chem Mater, 1999, 11: 1259–1266

    Article  CAS  Google Scholar 

  11. Li GS, Smith RL, Inomata H. Synthesis of nanoscale Ce1−x FexO2 solid solutions via a low-temperature approach. J Am Chem Soc, 2001, 123: 11091–11092

    Article  CAS  Google Scholar 

  12. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  13. Hu WB, Li LP, Li GS, Tang CL, Sun L. High-quality brookite TiO2 flowers: Synthesis, characterization, and dielectric performance. Cryst Growth Des, 2009, 9: 3676–3682

    Article  CAS  Google Scholar 

  14. Li GS, Boerio-Goates J, Woodfield BF, Li LP. Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl Phys Lett, 2005, 85: 2059–2061

    Article  Google Scholar 

  15. Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett, 2000, 85: 3440–3443

    Article  CAS  Google Scholar 

  16. Palkar VR, Ayyub P, Chattopadhyay S, Multani M. Size-induced structural transitions in the Cu-O and Ce-O systems. Phys Rev B, 1996, 53: 2167–2170

    Article  CAS  Google Scholar 

  17. Frey GL, Tenne R, Matthews MJ, Dresselhaus MS, Dresselhaus G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys Rev B, 1999, 60: 2883–2992

    Article  CAS  Google Scholar 

  18. Taneda A, Kawazoe Y. Structure and magnetism of small Fe clusters. J Magn Soc Jpn, 1999, 23: 679–681

    Article  CAS  Google Scholar 

  19. Mays CM, Vermaak JS, Kuhlmann-Wilsdorf D. On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci, 1968, 12: 134–140

    Article  CAS  Google Scholar 

  20. Lu L, Li LP, Wang XJ, Li GS. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3. J Phys Chem B, 2005, 109: 17151–17156

    Article  CAS  Google Scholar 

  21. Li LP, Qiu XQ, Li GS. Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures. Appl Phys Lett, 2005, 87: 124101

    Article  Google Scholar 

  22. Li LP, Chen LJ, Qihe RM, Li GS. Magnetic crossover of NiO nanocrystals at room temperature. Appl Phys Lett, 2006, 89: 134102

    Article  Google Scholar 

  23. Su YG, Li GS, Xue YF, Li LP. Tunable physical properties of CaWO4 nanocrystals via particle size control. J Phys Chem C, 2007, 111: 6684–6689

    Article  CAS  Google Scholar 

  24. Li LP, Su YG, Li GS. Size-induced symmetric enhancement and its relevance to photoluminescence of scheelite CaWO4 nanocrystals. Appl Phys Lett, 2007, 90: 054105

    Article  Google Scholar 

  25. Tong WM, Li LP, Hu WB, Yan TJ, Guan XF, Li GS. Kinetic control of MnWO4 nanoparticles for tailored structural properties. J Phys Chem C, 2010, 114: 15298–15305

    Article  CAS  Google Scholar 

  26. Tong WM, Li LP, Hu WB, Yan TJ, Li GS. Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity. J Phys Chem C, 2010, 114: 1512–1519

    Article  CAS  Google Scholar 

  27. Manjon FJ, Errandonea D, Lopez-Solano J, Rodriguez-Hernandez P, Munoz A. Negative pressures in CaWO4 nanocrystals. J Appl Phys, 2009, 105: 094321

    Article  Google Scholar 

  28. Zhang ZR, Ge QF, Li SC, Kay BD, White JM, Dohnalek Z. Vacancy-assisted diffusion of alkoxy species on rutile TiO2(110). Phys Rev Lett, 2007, 99: 126105

    Article  Google Scholar 

  29. Henderson MA, Epling WS, Peden CHF, Perkins CL. Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2− with OH groups adsorbed at electronic defects on TiO2(110). J Phys Chem B, 2003, 107: 534–545

    Article  CAS  Google Scholar 

  30. Li GS, Li LP, Boerio-Goates J, Woodfield BF. High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc, 2005, 127: 8659–8666

    Article  CAS  Google Scholar 

  31. Levchenko AA, Li GS, Boerio-Goates J, Woodfield BF, Navrotsky A. TiO2 stability landscape: Polymorphism, surface energy, and bound water energetic. Chem Mater, 2006, 18: 6324–6332

    Article  CAS  Google Scholar 

  32. Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ. Energetics of nanocrystalline TiO2. Proceed Nation Acad Sci USA, 2002, 99: 6476–6481

    Article  CAS  Google Scholar 

  33. Boerio-Goates J, Li GS, Li LP, Walker TF, Parry T, Woodfield BF. Surface water and the origin of the positive excess specific heat for 7 nm rutile and anatase nanoparticles. Nano Lett, 2006, 6: 750–754

    Article  CAS  Google Scholar 

  34. Levchenko AA, Kolesnikov AI, Ross NL, Boerio-Goates J, Woodfield BF, Li GS, Navrotsky A. Dynamics of water confined on a TiO2 (Anatase) surface. J Phys Chem A, 2007, 111: 12584–12588

    Article  CAS  Google Scholar 

  35. Spencer EC, Levchenko AA, Ross NL, Kolesnikov AI, Boerio-Goates J, Woodfield BF, Navrotsky A, Li GS. Inelastic neutron scattering study of confined surface water on rutile nanoparticles. J Phys Chem A, 2009, 113: 2796–2800

    Article  CAS  Google Scholar 

  36. Kumar TVV, Prabhakar S, Raju GB. Adsorption of oleic acid at sillimanite/water interface. J Colloid Interface Sci, 2002, 247: 275–281

    Article  CAS  Google Scholar 

  37. Li LP, Li GS, Xu JX, Zheng J, Tong WM, Hu WB. Insights into the roles of organic coating in tuning the defect chemistry of monodisperse TiO2 nanocrystals for tailored properties. Phys Chem Chem Phys, 2010, 12: 10857–10864

    Article  CAS  Google Scholar 

  38. Zhang ZH, Zhong XH, Liu SH, Li DF, Han MY. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem In Ed, 2005, 44: 3466–3470

    Article  CAS  Google Scholar 

  39. He J, Behera RK, Finnis MW, Li X, Dickey EC, Phillpot SR, Sinnott SB. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations. Acta Materialia, 2007, 55: 4325–4337

    Article  CAS  Google Scholar 

  40. Smyth DM. The Defect Chemistry of Metal Oxides. Oxford: University Press, 2000

    Google Scholar 

  41. Nowotny MK, Bak T, Nowotny J. Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. J Phys Chem B, 2006, 110: 16270–16282

    Article  CAS  Google Scholar 

  42. Knauth P, Tuller HL. Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J Appl Phys, 1999 85: 897–902

    Article  CAS  Google Scholar 

  43. Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T. Pyrogenic lron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: Phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc, 2005, 127: 10982–10990

    Article  CAS  Google Scholar 

  44. Fabrega C, Andreu T, Cabot A, Morante JR. Location and catalytic role of iron species in TiO2:Fe photocatalysts: An EPR study. J Photochem Photobio A-Chem, 2010, 211: 170–175

    Article  CAS  Google Scholar 

  45. Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J Am Chem Soc, 2000, 122: 2532–2540

    Article  CAS  Google Scholar 

  46. Hu WB, Li LP, Tong WM, Li GS. Supersaturated spontaneous nucleation to TiO2 microspheres: synthesis and giant dielectric performance. Chem Commun, 2010, 46: 3113–3115

    Article  CAS  Google Scholar 

  47. Hu WB, Li LP, Tong WM, Li GS, Yan TJ. Tailoring the nanoscale boundary cavities in rutile TiO2 hierarchical microspheres for giant dielectric performance. J Mater Chem, 2010, 20: 8659–8667

    Article  CAS  Google Scholar 

  48. Su YG, Li GS, Chen XB, Liu JJ, Li LP. Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission. Chem Lett, 2008, 37: 762–763

    Article  CAS  Google Scholar 

  49. Li LP, Su YG, Li GS. Chemical modifications of red phosphor LaPO4:Eu3+ nanorods to generate white light. J Mater Chem, 2010, 20: 459–465

    Article  CAS  Google Scholar 

  50. Su YG, Li LP, Li GS. Synthesis and optimum luminescence of CaWO4-based red phosphors with co-doping of Eu3+ and Na+. Chem Mater, 2008, 20: 6060–6067

    Article  CAS  Google Scholar 

  51. Fu YS, Du XW, Kulinich SA, Qiu JS, Qin WJ, Li R, Sun J, Liu J. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J Am Chem Soc, 2007, 129: 16029–16033

    Article  CAS  Google Scholar 

  52. Rousseau R, De Renzi V, Mazzarello R, Marchetto D, Biagi R, Scandolo S, del Pennino U. Interfacial electrostatics of self-assembled monolayers of alkane thiolates on Au(111): Work function modification and molecular level alignments. J Phys Chem B, 2006, 110: 10862–10872

    Article  CAS  Google Scholar 

  53. see, http://nanotechweb.org/cws/article/lab/38258

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangShe Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Li, L. & Zheng, J. Understanding the defect chemistry of oxide nanoparticles for creating new functionalities: A critical review. Sci. China Chem. 54, 876–886 (2011). https://doi.org/10.1007/s11426-011-4291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4291-1

Keywords

Navigation