Skip to main content

From Point Defects to Defect Complexes

  • Chapter
  • First Online:
Hyperordered Structures in Materials

Part of the book series: The Materials Research Society Series ((MRSS))

  • 206 Accesses

Abstract

Most of the materials have dopants to create functionalities. However, due to the high demands on material functionality in cutting-edge devices, the conventional concept of point defects is no longer sufficient. Therefore, attempts to break through the limitations of point defects by doping different elements to create defect complexes have begun to progress. This section begins with examples of point defects and their role in a wide range of materials, including semiconductors, superconductors, catalysts, scintillators, metals, and glasses. Then, the limitations of the point defects and their solutions using defect complexes are presented with examples of semiconductor and glass. In the latter part of this section, examples of defect complexes are presented, divided into dopant-vacancy pairs and complex defects with sub-nanometer scales. These confer novel functionalities to materials. For example, nitrogen vacancy (NV) centers in diamond have been considered as a promising for quantum bits, and Mn4CaO5 clusters in photosystem II protein play an important role in photosynthesis. Finally, I introduce characterization techniques and theoretical methods to correctly understand the structures and properties of the defect complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Takagi H, Ido T, Ishibashi S, Uota M, Uchida S, Tokura Y (1989) Phys Rev B 40:2254

    Article  CAS  Google Scholar 

  2. Sawa H, Suzuki S, Watanabe M, Akimitsu J, Matsubara H, Watabe H, Uchida S, Kokusho K, Asano H, Izumi F, Muromachi ET (1989) Nature 337:347

    Article  CAS  Google Scholar 

  3. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Nature 418:164

    Article  CAS  Google Scholar 

  4. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K (2020) Nature 581:411

    Article  CAS  Google Scholar 

  5. Fujiwara T, Sasahara A, Happo N, Kimura K, Hayashi K, Onishi H (2020) Chem Mater 32:1439

    Google Scholar 

  6. Sasahara A, Kimura K, Sudrajat H, Happo N, Hayashi K, Onishi H (2022) J Phys Chem C 126:19745

    Article  CAS  Google Scholar 

  7. An L, Onishi H (2015) ACS Catal 5:3196

    Article  CAS  Google Scholar 

  8. Berger MJ, Doggett J (1956) Rev Sci Instrum 27:269

    Article  CAS  Google Scholar 

  9. Plettner C, Pausch G, Scherwinski F, Herbach CM, Lentering R, Kong Y, Römer K, Grodzicka M, Szcześniak T, Iwanowska J, Moszyński M (2013) J Instrum 8:6010

    Article  Google Scholar 

  10. Melcher CL, Schweitzer JS (1992) Nucl Instumr Methods 314:212

    Article  Google Scholar 

  11. Iwanowska J, Swiderski L, Moszynski M, Yanagida T, Yokota Y, Yo-shikawa A, Fukuda K, Kawaguchi N, Ishizuc S (2011) Nucl Instrum Methods Phys Res A 652:319

    Google Scholar 

  12. Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y (1984) J Appl Phys 55:2083

    Article  CAS  Google Scholar 

  13. Croat JJ, Herbst JF, Lee RW, Pinkerton FE (1984) J Appl Phys 55:2078

    Article  CAS  Google Scholar 

  14. Sagawa M, Fujimura S, Yamamoto H, Matsuura Y, Hiraga K (1984) IEEE Trans Magn 20:1584

    Article  Google Scholar 

  15. Mikami M, Kinemuchi Y, Ozaki K, Terazawa Y, Takeuchi T (2012) J Appl Phys 111:093710

    Article  Google Scholar 

  16. Kimura K, Yamamoto K, Hayashi K, Tsutsui S, Happo N, Yamazoe S, Miyazaki H, Nakagami S, Stellhorn JR, Hosokawa S, Matsushita T, Tajiri H, Ang AKR, Nishino Y (2020) Phys Rev 101:024302

    Article  CAS  Google Scholar 

  17. Sundar RS, Deevi SC (2005) Int Mater Rev 50:157

    Article  CAS  Google Scholar 

  18. Su X (2003) J Mater Sci 3:4581

    Article  Google Scholar 

  19. Haynes WM (ed) (2014) Handbook of chemistry and physics, 95th ed. CRC Press, Boca Raton, FL, pp 4–88

    Google Scholar 

  20. Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S (2015) Sci Rep 5:14509

    Article  CAS  Google Scholar 

  21. https://en.wikipedia.org/wiki/Transistor_count

  22. Oshima Y, Hashimoto Y, Tanishiro Y, Takayanagi Y, Sawada H, Kaneyama T, Kondo Y (2010) Phys Rev B 81:035317

    Article  Google Scholar 

  23. Tsutsui K, Matsushita T, Natori K, Muro T, Morikawa Y, Hoshi T, Kakushima K, Wakabayashi H, Hayashi K, Matsui F, Kinoshita T (2017) Nano Lett 17:7533

    Google Scholar 

  24. Tsutsui K, Morikawa Y (2020) Jpn J Appl Phys 59:010503

    Article  CAS  Google Scholar 

  25. McGreevy RL, Puztai L (1988) Mol Simul 1:359

    Article  Google Scholar 

  26. Onodera Y, Takimoto Y, Hijiya H, Taniguchi T, Urata S, Inaba S, Fujita S, Obayashi I, Hiraoka Y, Kohara S (2019) NPG Asia Mater 11:75

    Article  CAS  Google Scholar 

  27. Fahey PM, Griffin PB, Plummer D (1989) Rev Mod Phys 61:289

    Article  CAS  Google Scholar 

  28. Corbett JW, Watkins GD, Chrenko RM, Mc’Donald RS (1961) Phys Rev 121:1015

    Article  CAS  Google Scholar 

  29. Wean RE (1976) Phys Rev 13:1653

    Google Scholar 

  30. Lee Y-H, Corbctt JW (1976) Phys Rev B 13:2653

    Article  CAS  Google Scholar 

  31. Watkins GD, Corbett JW (1964) Phys Rev 134:A1359

    Article  Google Scholar 

  32. Sugie R, Matsuda K, Ajioka T, Yoshikawa M, Mizukoshi T, Shibusawa K, Yo S (2006) J Appl Phys 100:064504

    Article  Google Scholar 

  33. Loubser JHN, van Wyk JA (1978) Rep Prog Phys 41:201

    Article  Google Scholar 

  34. Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Bor-czyskowski C (1997) Science 276:2012

    Article  CAS  Google Scholar 

  35. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Mhmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 291:854

    Article  CAS  Google Scholar 

  36. Yamada Y, Ueno K, Fukumura T, Yuan HT, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y, Kawasaki M (2011) Science 332:1065

    Article  CAS  Google Scholar 

  37. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) Appl Phys Lett 69:363

    Article  CAS  Google Scholar 

  38. Hu W, Hayashi K, Fukumura T, Akagi K, Tsukada M, Happo N, Hosokawa S, Ohwada K, Takahasi M, Suzuki M, Kawasaki M (2015) Appl Phys Lett 106:222403

    Article  Google Scholar 

  39. Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Mater Trans 42:1172

    Article  CAS  Google Scholar 

  40. Egusa D, Abe E (2012) Acta Mater 60:166

    Article  CAS  Google Scholar 

  41. Nishioka T, Yamamoto Y, Kimura K, Hagihara K, Izuno H, Happo N, Hosokawa S, Abe E, Suzuki M, Matsushita T, Hayashi K (2018) Materialia 3:256

    Article  CAS  Google Scholar 

  42. Hosokawa S, Kimura K, Stellhorn JR, Yoshida K, Hagihara K, Izuno H, Yamasaki M, Kawamura Y, Mine Y, Takashima K, Uchiyama H, Tsutsui S, Koura A, Shimojo F (2018) Acta Mater 146:273

    Article  CAS  Google Scholar 

  43. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Nature 473:55

    Article  CAS  Google Scholar 

  44. Kok B, Forbush B, McGloin M (1970) Photochem Photobiol 11:457

    Article  CAS  Google Scholar 

  45. Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR (2015) Nature 517:99

    Article  CAS  Google Scholar 

  46. Kern J, Chatterjee R, Young ID, Fuller FD, Lassalle L, Ibrahim M, Gul S, Fransson T, Brewster AS, Alonso-Mori R, Hussein R, Zhang M, Douthit L, de Lichtenberg C, Cheah MH, Shevela D, Wersig J, Seuffert I, Sokaras D, Pastor E, Weninger C, Kroll T, Sierra RG, Aller P, Butryn A, Orville AM, Liang M, Batyuk A, Koglin JE, Carbajo S, Boutet S, Moriarty NW, Holton JM, Dobbek H, Adams PD, Bergmann U, Sauter NK, Zouni A, Messinger J, Yano J, Yachandra VK (2018) Nature 563:421

    Article  CAS  Google Scholar 

  47. Ang AKR, Umena Y, Tomita AS, Shibayama N, Happo N, Marumi R, Yamamoto Y, Kimura K, Kawamura N, Takano Y, Matsushita T, Sasaki YC, Sheni J-R, Hayashi K (2023) J Synchrotron Radiat 30:368

    Article  CAS  Google Scholar 

  48. Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari AR, Sakurai T, Chen MW (2011) Nature Mater 10:28

    Article  CAS  Google Scholar 

  49. http://www.order-n.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Materials Research Society, under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, K. (2024). From Point Defects to Defect Complexes. In: Hayashi, K. (eds) Hyperordered Structures in Materials. The Materials Research Society Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-5235-9_1

Download citation

Publish with us

Policies and ethics