Skip to main content
Log in

Preparation of copper net-supported metal-organic framework-5 membranes for solid-state lasers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Continuous copper net-supported metal-organic framework (MOF-5) membranes of high quality are synthesized for the first time by vapor diffusion of an organic amine. The velocity of diffusion of the organic amine and reaction temperature directly affect the quality of the membranes formed. Furthermore, a laser dye is successfully encapsulated within such membranes in CHCl3. The dye-loaded MOF-5 membranes have potential applications in optics, especially in laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature. 1999, 402: 276–279

    Article  CAS  Google Scholar 

  2. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000, 404: 982–986

    Article  CAS  Google Scholar 

  3. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res, 2001, 34: 319–330

    Article  CAS  Google Scholar 

  4. Rowsell JLC, Yaghi OM. Metal-organic frameworks: A new class of porous materials. Micro Meso Mater, 2004, 73: 3–14

    Article  CAS  Google Scholar 

  5. Panella B, Hirscher M. Hydrogen physisorption in metal-organic porous crystals. Adv Mater, 2005, 17: 538–541

    Article  CAS  Google Scholar 

  6. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309: 2040–2042

    Article  Google Scholar 

  7. Brendan F, Abrahams BF, Haywood MG, Robson R, Slizys DA. New tricks for an old dog: The carbonate ion as a building block for networks including examples of composition [Cu6(CO3)12{C(NH2)3}8]4− with the sodalite topology. Angew Chem Int Ed, 2003, 42: 1112–1115

    Article  Google Scholar 

  8. Tabares LC, Navarro JAR, Salas JM. Cooperative guest inclusion by a zeolite analogue coordination polymer. sorption behavior with gases and amine and group 1 metal salts. J Am Chem Soc, 2001, 123: 383–387

    Article  CAS  Google Scholar 

  9. Fang Q, Zhu G, Xue M, Sun J, Wei Y, Qiu S, Xu R. A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3. Angew Chem Int Ed, 2005, 44: 3845–3848

    Article  CAS  Google Scholar 

  10. Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem Int Ed, 2004, 43: 6296–6301

    Article  Google Scholar 

  11. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keffe M, Yaghi OM. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc, 2005, 127, 1504–1518

    Article  CAS  Google Scholar 

  12. Guo X, Zhu G, Li Z, Chen Y, Li X, Qiu S. Rare earth coordination polymers with zeolite topology constructed from 4-connected building units. Inorg Chem, 2006, 45: 4065–4070

    Article  CAS  Google Scholar 

  13. Armor JN. Applications of catalytic inorganic membrane reactors to refinery products. J Membr Sci, 1998, 147: 217

    Article  CAS  Google Scholar 

  14. Mintova S, Mo S, Bein T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem Mater, 2001, 13: 901

    Article  CAS  Google Scholar 

  15. Caro J, Noack M, KJlsch P, SchKfer R, Zeolite membranes-state of their development and perspective. Micro Meso Mater, 2000, 38: 3–24

    Article  CAS  Google Scholar 

  16. Bowenl TC, Noble RD, Falconer JL, Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci, 2004, 245: 1–33

    Article  Google Scholar 

  17. Yin X, Zhu G, Yang W, Li Y, Zhu G, Xu R, Sun J, Qiu S, Xu R. Stainless-steel-net-supported Zeolite NaA membrane with high permeance and high permselectivity for oxygen over nitrogen. Adv Mater, 2005, 17: 2006–2010

    Article  CAS  Google Scholar 

  18. Guo H, Zhu G, Li H, Zou X, Yin X, Yang W, Qiu S, Xu R. Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling CO2. Angew Chem Int Ed, 2006, 45: 7053–7056

    Article  CAS  Google Scholar 

  19. Hermes S, Schröder F, Chelmowski R, Wöll C, Fischer RA, Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3− terminated self-assembled monolayers on Au(111). J Am Chem Soc, 2005, 127: 13744–13745

    Article  CAS  Google Scholar 

  20. Biemmi E, Scherb C, Bein T. Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized selfassembled monolayers. J Am Chem Soc, 2007, 129: 80544–8055

    Article  Google Scholar 

  21. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005, 105: 1103–1169

    Article  CAS  Google Scholar 

  22. Arnold R, Azzam W, Terfort A, Wöll C. Preparation, modification, and crystallinity of aliphatic and aromatic carboxylic acid terminated self-assembled monolayers. Langmuir, 2002, 18: 3980–3992

    Article  CAS  Google Scholar 

  23. Laibinis PE, Whitesides GM, Allara DL, Tao Y, Parikh AN, Nuzzo RG. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au. J Am Chem Soc, 1991, 113: 7152–7167

    Article  CAS  Google Scholar 

  24. Choo J, Kim T, Choi Y. Laser-induced fluorescence excitation spectrum and cf3 torsional potential energy function of -amino-4-(trifluoromethyl)coumarin in its S1 electronic excited state. Bull Korean Chem Soc, 1996, 17: 461–463

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiJun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Sha, Z. Preparation of copper net-supported metal-organic framework-5 membranes for solid-state lasers. Sci. China Chem. 54, 947–950 (2011). https://doi.org/10.1007/s11426-011-4277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4277-z

Keywords

Navigation