Skip to main content
Log in

Multiple resonances with time delays in scale-free networks of Hodgkin-Huxley neurons subjected to non-Gaussian noise

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The spiking behavior with varying time delay in scale-free networks of Hodgkin-Huxley neurons with non-Gaussian noise has been studied, and the effect of non-Gaussian noise on the delay-induced spiking behavior is discussed. It was found that multiple spatio-temporal resonances occur when the delay lengths are integer multiples of the spiking periods, and the resonances may be strengthened when the non-Gaussian noise is appropriate. This result shows that time delays can optimize the spiking temporal regularity and spatial synchronization, and appropriate non-Gaussian noise may enhance the delay-induced spiking behaviors. Our findings may help to further understand the joint roles of non-Gaussian noise and time delays in the spiking activity of scale-free neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys, 1998, 70: 223–287

    Article  CAS  Google Scholar 

  2. Lee SG, Kim S. Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Phys Rev E, 1999, 60: 826–830

    Article  CAS  Google Scholar 

  3. Chik DTW, Wang YQ, Wang ZD. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise. Phys Rev E, 2001, 64: 021913

    Article  CAS  Google Scholar 

  4. Hänggi P. Stochastic resonance in biology-how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem, 2002, 3: 285–290

    Article  Google Scholar 

  5. Longtin A. Autonomous stochastic resonance in bursting neurons. Phys Rev E, 1997, 55: 868–876

    Article  Google Scholar 

  6. Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys Rev Lett, 1997, 78: 775–778

    Article  CAS  Google Scholar 

  7. Lee SG, Neiman A, Kim S. Coherence resonance in a Hodgkin-Huxley neuron. Phys Rev E, 1998, 57: 3292–3297

    Article  CAS  Google Scholar 

  8. Zhou CS, Kurths J, Hu B. Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise. Phys Rev Lett, 2001, 87: 098101

    Article  CAS  Google Scholar 

  9. Zhou CS, Kurths J, Hu B. Frequency and phase locking of noise-sustained oscillations in coupled excitable systems: Array-enhanced resonances. Phys Rev E, 2003, 67: 030101(R)

    Article  Google Scholar 

  10. Gao Z, Hu B, Hu G. Stochastic resonance of small-world networks. Phys Rev E, 2001, 65: 016209

    Article  Google Scholar 

  11. Kwon O, Moon H-T. Coherence resonance in small-world networks of excitable cells. Phys Lett A, 2002, 298: 319–324

    Article  CAS  Google Scholar 

  12. Kwon O, Jo H-H, Moon H-T. Effect of spatially correlated noise on coherence resonance in a network of excitable cells. Phys Rev E, 2005, 72: 066121

    Article  Google Scholar 

  13. Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203

    Article  Google Scholar 

  14. Ozer M, Perc M, Uzuntarla M. Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving. Phys Lett A, 2009, 373: 964

    Article  CAS  Google Scholar 

  15. Carrillo O. Santos MA, García-Ojalvo J, Sancho JM. Spatial coherence resonance near pattern-forming instabilities. Europhys Lett, 2004, 65: 452

    Article  CAS  Google Scholar 

  16. Wang QY, Lu QS, Chen GR. Spatio-temporal patterns in a square-lattice Hodgkin-Huxley neural network. Eur Phys J B, 2006, 12: 255–261

    CAS  Google Scholar 

  17. Wiesenfeld K, Pierson D, Pantazelou E, Dames C, Moss F. Stochastic resonance on a circle. Phys Rev Lett, 1994, 72: 2125–2129

    Article  Google Scholar 

  18. Nozaki D, Mar DJ, Grigg P, Collins JJ. Effects of colored noise on stochastic resonance in sensory neurons. Phys Rev Lett, 1999, 82: 2402–2405

    Article  CAS  Google Scholar 

  19. Gong YB, Xie YH, Hao YH. Coherence resonance induced by non-Gaussion noise in a deterministic Hodgkin-Huxley neuron. Physica A, 2009, 388: 3759–3764

    Article  Google Scholar 

  20. Gong YB, Xie YH, Hao YH. Coherence resonance induced by the deviation of non-Gaussian noise in coupled Hodgkin-Huxley neurons. J Chem Phys, 2009, 130: 165101

    Article  Google Scholar 

  21. Gong YB, Hao YH, Xie YH, Ma XG, Yang CL. Non-Gaussian noise optimized spiking activity of Hodgkin-Huxley neurons on random complex networks. Biophys Chem, 2009, 144: 88–93

    Article  CAS  Google Scholar 

  22. Zhou CS, Kurths J. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401–409

    Article  Google Scholar 

  23. Wang QY, Lu QS, Chen GR. Ordered bursting synchronization and complex wave propagation in a ring neuronal network. Physica A, 2007, 374: 869–878

    Article  Google Scholar 

  24. Ibarz B, Cao HJ, Sanjuán MAF. Bursting regimes in map-based neuron models coupled through fast threshold modulation. Phys Rev E, 2008, 77: 051918

    Article  Google Scholar 

  25. Wang QY, Lu QS, Chen GR. Subthreshold stimulus-aided temporal order and synchronization in a square lattice noisy neuronal network. Europhys Lett, 2007, 77: 10004

    Article  Google Scholar 

  26. Perc M. Optimal spatial synchronization on scale-free networks via noisy chemical synapses. Biophys Chem, 2009, 141: 175–179

    Article  CAS  Google Scholar 

  27. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. Amsterdam: Elsevier, 1991

    Google Scholar 

  28. Dhamala M, Jirsa VK, Ding MZ. Enhancement of neural synchrony by time delay. Phys Rev Lett, 2004, 92: 074104

    Article  Google Scholar 

  29. Rossoni E, Chen YH, Ding MZ, Feng JF. Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys Rev E, 2005, 71: 061904

    Article  Google Scholar 

  30. Burić N, Todorović K, Vasović N. Synchronization of bursting neurons with delayed chemical synapses. Phys Rev E, 2008, 78: 036211

    Article  Google Scholar 

  31. Roxin A, Brunel N, Hansel D. Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett, 2005, 94: 238103

    Article  Google Scholar 

  32. Wang QY, Perc M, Duan ZS, Chen GR. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys Lett A, 2008, 372: 5681–5687

    Article  CAS  Google Scholar 

  33. Wang QY, Duan ZS, Perc M, Chen GR. Synchronization transitions on small world neuronal networks: Effects of information transmission delay and rewiring probability. Europhys Lett, 2008, 83: 50008

    Article  Google Scholar 

  34. Wang QY, Perc M, Duan ZS, Chen GR. Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E, 2009, 80: 026206

    Article  Google Scholar 

  35. Xie YH, Gong YB, Hao YH, Ma XG. Synchronization transitions on complex thermo-sensitive neuron networks with time delay. Biophys Chem, 2010, 146: 126–132

    Article  CAS  Google Scholar 

  36. Wang QY, Perc M, Duan ZS, Chen GR. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112

    Article  Google Scholar 

  37. Wang QY, Perc M, Duan ZS, Chen GR. Spatial coherence resonance in delayed Hodgkin-Huxley neuronal networks. Int J Mod Phys B, 2010, 24: 1201–1203

    Article  Google Scholar 

  38. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. Scale-free brain functional networks. Phys Rev Lett, 2005, 94: 018102.

    Article  Google Scholar 

  39. Kaiser M, Martin R, Andras P, Young MP. Simulation of robustness against lesions of cortical networks. Eur J Neurosci, 2007, 25: 3185–3192

    Article  Google Scholar 

  40. Wang MS, Hou ZH, Xin HW. Optimal network size for Hodgkin-Huxley neurons. Phys Lett A, 2005, 334: 93–97

    Article  CAS  Google Scholar 

  41. Wio HS, Toral R. Effect of non-Gaussian noise sources in a noise-induced transition. Physica D, 2004, 193: 161–168

    Article  Google Scholar 

  42. Goh KI, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys Rev Lett, 2001, 87: 278701

    Article  CAS  Google Scholar 

  43. Hou ZH, Xiao TJ, Xin HW. Internal noise coherence resonance for mesoscopic chemical oscillations: A fundamental study. ChemPhys Chem, 2006, 7: 1520–1524

    CAS  Google Scholar 

  44. Xiao TJ, Ma J, Hou ZH, Xin HW. 2007. Effects of internal noise in mesoscopic chemical systems near Hopf bifurcation. New J Phys, 2007, 9: 403

    Article  Google Scholar 

  45. Ma J, Hou ZH, Xin HW. Theoretical study on the effect of internal noise for rate oscillations during CO oxidation on platinum(110) surfaces. J Phys Chem A, 2007, 111: 11500–11505

    Article  CAS  Google Scholar 

  46. Ma J, Xiao TJ, Hou ZH, Xin HW. Coherence resonance induced by colored noise near Hopf bifurcation. Chaos, 2008, 18: 043116.

    Article  Google Scholar 

  47. Zhang RT, Hou ZH, Xin HW. Effects of non-Gaussian noise near supercritical Hopf bifurcation. Physica A (in press, doi:10.1016/j.physa.2010.08.05).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y., Gong, Y., Lin, X. et al. Multiple resonances with time delays in scale-free networks of Hodgkin-Huxley neurons subjected to non-Gaussian noise. Sci. China Chem. 54, 782–787 (2011). https://doi.org/10.1007/s11426-011-4268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4268-0

Keywords

Navigation