Skip to main content
Log in

Modeling multiple chemical equilibrium for reactive extraction of naproxen enantiomers with HP-β-CD as hydrophilic selector

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Reactive extraction is an emerging technology for large-scale continuous resolution of drug enantiomers. The enantioselective extraction of R,S-naproxen by hydrophilic HP-β-CD in 1,2-dichloroethane was studied at 5 °C. The experimental data were described by a reactive extraction model with a homogeneous aqueous phase reaction of R,S-naproxen with HP-β-CD which couples a complete description of chemical equilibria in aqueous phase with the overall phase equilibria of the system. Important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic NAP were 0.041 and 1.730, respectively. Here we show that the efficiency of extraction depends strongly on two process variables including pH and HP-β-CD concentration. The model predictions are compared graphically with the results of previous experiments and there is a good agreement between each other. By the use of modeling and experiment, an optimized extraction condition with pH of 2.5 and HP-β-CD concentration of 0.1 mol/L was obtained with high enantioselectivity (α?) of 1.59 and performance factor (pf) of 0.049. The model gives a good means of predicting enantiomers partitioning over a range of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hutt AJ. Drug chirality: impact on pharmaceutical regulation. Chirality, 1991, 3: 161–164

    Article  CAS  Google Scholar 

  2. Yokota M, Doki N, Shimizu K. Chiral separation of a racemic compound induced by transformation of racemic crystal structures: DL-glutamic acid. Cryst Growth Des, 2006, 6: 1588–1590

    Article  CAS  Google Scholar 

  3. Maier NM, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A, 2001, 906: 3–33

    Article  CAS  Google Scholar 

  4. Tan B, Luo GS, Wang JD. Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and aliquat-336. Sep Purif Technol, 2007, 53: 330–336

    Article  CAS  Google Scholar 

  5. Colera M, Costero A, Gaviña P, Gil S. Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron Asymmetry, 2005, 16: 2673–2679

    Article  CAS  Google Scholar 

  6. Pietraszkiewicz M, Koźbia M, Pietraszkiewicz O. Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from D-mannose. J Membr Sci, 1998, 138: 109–113

    Article  CAS  Google Scholar 

  7. Keurentjes JTF, Nabuurs LWM, Vegter EA. Liquid membrane technology for the separation of racemic mixtures. J Membr Sci, 1996, 113: 351–360

    Article  CAS  Google Scholar 

  8. Tang KW, Yi JM, Liu YB, Jiang XY, Pan Y. Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chem Eng Sci, 2009, 64: 4081–4088

    Article  CAS  Google Scholar 

  9. Tang KW, Song LT, Liu YB, Jiang XY, Pan Y. Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chem Eng J, 2010, 158: 411–417

    Article  CAS  Google Scholar 

  10. Tang KW, Chen YY, Huang KL. Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 2007, 18: 2399–2408

    Article  CAS  Google Scholar 

  11. Viegas RC, Afonso CAM, Crespo JG, Coelhoso IM. Modelling of the enantio-selective extraction of propranolol in a biphasic system. Sep Purif Technol, 2007, 53: 224–234

    Article  CAS  Google Scholar 

  12. Schuur B, Winkelmam JGM, Heeres HJ. Equilibrium studies on enantioselective liquid-liquid amino acid extraction using a cinchona alkaloid extractant. Ind Eng Chem Res, 2008, 47: 10027–10033

    Article  CAS  Google Scholar 

  13. Koska J, Haynes CA. Modelling multiple chemical equilbria in chiral partition systems. Chem Eng Sci, 2001, 56: 5853–5864

    Article  CAS  Google Scholar 

  14. Steensma M, Kuipers NJM, de Haanl AB, Kwant G. Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. J Chem Technol Biotechnol, 2006, 81: 588–597

    Article  CAS  Google Scholar 

  15. Kocabas E, Karakucuk A, Sirit A, Yilmaz M. Synthesis of new chiral calix[4]arene diamide derivatives for liquid phase extraction of α-amino acid methylesters. Tetrahedron: Asymmetry, 2006, 17: 1514–1520

    Article  CAS  Google Scholar 

  16. Ameyibor E, Stewart JT. Enantiomeric HPLC separation of selected chiral drugs using native and derivatized β-cyclodextrins as chiral mobile phase additives. J Liq Chromatogr Relat Technol, 1997, 20: 855–869

    Article  CAS  Google Scholar 

  17. Zhou SS, Ouyang J, Baeyens WRG, Zhao HC, Yang YP. Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector. J Chromatogr A, 2006, 1130: 296–301

    Article  CAS  Google Scholar 

  18. Bechet I, Paques P, Fillet M, Hubert P, Crommen, J. Chiral separation of basic drugs by capillary zone electrophoresis with cyclodextrin additives. Electrophoresis, 1994, 15: 818–823

    Article  CAS  Google Scholar 

  19. Surapaneni S, Khalil SKW. Resolution of terfenadine enantiomers by reversed phase-high performance liquid chromatography using β-cyclodextrin as mobile phase additive. J Pharm Biomed Anal, 1996, 14: 1631–1634

    Article  CAS  Google Scholar 

  20. Meindersma GW, van Schoonhoven T, Kuzmanovic B, de Haan AB. Extraction of toluene, o-xylene from heptane and benzyl alcohol from toluene with aqueous cyclodextrins. Chem Eng Process, 2006, 45: 175–183

    Article  CAS  Google Scholar 

  21. Campiglio A. Determination of naproxen with chemiluminescence detection. Analyst, 1998, 123, 1571–1574

    Article  CAS  Google Scholar 

  22. Lelièvre F, Gareil P. Chiral separations of underivatized arylpropionic acids by capillary zone electrophoresis with various cyclodextrins acidity and inclusion constant determinations. J Chromatogr A, 1996, 735: 311–320

    Article  Google Scholar 

  23. Tang KW, Miao JB, Zhou T, Song LT. Equilibrium studies on reactive extraction of naproxen enantiomers using hydrophilicn β-cyclodetrin derivatives extractants. J Incl Phenom Macrocycl Chem, 2010, 27: 1–8

    CAS  Google Scholar 

  24. Ning FR, Huang KL, Jiao FP. Study on retention characteristics and separation mechanism of enantiomers of naproxen with HP-β-CD as a mobile phase modifier in HPLC. Chem Online, 2006, 6: 425–429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeWen Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Zhang, P., Pan, C. et al. Modeling multiple chemical equilibrium for reactive extraction of naproxen enantiomers with HP-β-CD as hydrophilic selector. Sci. China Chem. 54, 1130–1137 (2011). https://doi.org/10.1007/s11426-011-4253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4253-7

Keywords

Navigation