Skip to main content
Log in

Conjugated polyelectrolytes for label-free visual detection of heparin

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Conjugated polyelectrolytes (CPEs), with electron-delocalized backbones and charged ionic side chains, are unique sensory materials for the construction of optical biosensors. In this feature article, CPE-based visual detection of heparin is summarized. Three CPE-based heparin probes, including ratiometric, light-up and colormetric probes, are discussed in terms of molecular design, detection selectivity and quantification capability. The work summarized here provides fundamental guidelines for CPE-based label-free visual sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinto MR, Schanze KS. Conjugated polyelectrolytes: Synthesis and applications. Synthesis, 2002, 1293–1309

  2. Duarte A, Pu KY, Liu B, Bazan GC. Recent advances in conjugated polyelectrolytes for emerging optoelectronic applications. Chem Mater, 2011, 23: 501–515

    Article  CAS  Google Scholar 

  3. Hoven CV, Garcia A, Bazan GC, Nguyen TQ. Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv Mater, 2008, 20: 3793–3810

    Article  CAS  Google Scholar 

  4. Huang F, Wu HB, Cao, Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem Soc Rev, 2010, 39: 2500–2521

    Article  CAS  Google Scholar 

  5. Thomas SW III, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev, 2007, 107: 1339–1386

    Article  CAS  Google Scholar 

  6. Nilsson KPR, Hammarström P. Luminescent conjugated polymers: illuminating the dark matters of biology and pathology. Adv Mater, 2008, 20: 2639–2645

    Article  CAS  Google Scholar 

  7. Feng XL, Tang YL, Duan XR, Liu LB, Wang S. Lipid-modified conjugated polymer nanoparticles for cell imaging and transfection. J Mater Chem, 2010, 20: 1312–1316

    Article  CAS  Google Scholar 

  8. Pu KY, Li K, Liu B. A molecular brush approach to enhance quantum yield and suppress nonspecific interactions of conjugated polyelectrolyte for targeted far-red/near-infrared fluorescence cell imaging. Adv Funct Mater, 2010, 20: 2770–2777

    Article  CAS  Google Scholar 

  9. Pu KY, Li K, Shi JB, Liu B. Fluorescent single-molecular core-shell nanospheres of hyperbranched conjugated polyelectrolyte for live-cell imaging. Chem Mater, 2009, 21: 3816–3822

    Article  CAS  Google Scholar 

  10. Liu B, Bazan, GC. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater, 2004, 16: 4467–4476

    Article  CAS  Google Scholar 

  11. Pu KY, Liu B. Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications. Biosens Bioelectron, 2009, 24: 1067–1073

    Article  CAS  Google Scholar 

  12. Gaylord BS, Heeger AJ, Bazan GC. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci USA, 2002, 99: 10954–10957

    Article  CAS  Google Scholar 

  13. Liu B, Baudrey S, Jaeger L, Bazan GC. Characterization of TectoRNA assembly with cationic conjugated polymers. J Am Chem Soc, 2004, 126: 4076–4077

    Article  CAS  Google Scholar 

  14. Pu KY, Liu B. Intercalating dye harnessed cationic conjugated polymer for real-time naked-eye recognition of double-stranded DNA in serum. Adv Funct Mater, 2009, 19: 2770–2777

    Google Scholar 

  15. Duan XR, Liu LB, Feng FD, Wang S. Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms. Acc Chem Res, 2010, 43: 260–270

    Article  CAS  Google Scholar 

  16. Pu KY, Pan SYH, Liu B. Optimization of Interactions between a cationic conjugated polymer and chromophore-labeled DNA for optical amplification of fluorescent sensors. J Phys Chem B, 2008, 112: 9295–9300

    Article  CAS  Google Scholar 

  17. Feng XL, Liu LP, Wang S, Zhu DB. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev, 2010, 39: 2411–2419

    Article  CAS  Google Scholar 

  18. Wang C, Zhan RY, Pu KY, Liu B. Cationic polyelectrolyte amplified bead array for DNA detection with zeptomole sensitivity and single nucleotide polymorphism selectivity. Adv Funct Mater, 2010, 20: 2597–2604

    Article  CAS  Google Scholar 

  19. Nilsson KPR, Rydberg J, Baltzer L, Inganäs O. Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proc Natl Acad Sci USA, 2003, 110: 10170–10174

    Article  Google Scholar 

  20. Li K, Liu B. Water-soluble conjugated polymers as the platform for protein sensors. Polym Chem, 2010, 1: 252–259

    Article  CAS  Google Scholar 

  21. Ho HA, Najari A, Leclerc M. Optical detection of DNA and proteins with cationic polythiophenes. Acc Chem Res, 2008, 41: 168–178

    Article  CAS  Google Scholar 

  22. Feng FD, He F, An LL, Wang S, Li YL, Zhu DB. Fluorescent conjugated polyelectrolytes for biomacromolecule detection. Adv Mater, 2008, 20: 2959–2964

    Article  CAS  Google Scholar 

  23. Wang YY, Liu B. Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosen Bioelectron, 2009, 24: 3293–3298

    Article  CAS  Google Scholar 

  24. Wang J, Liu B. Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem Commun, 2009, 17: 2284–2286

    Article  Google Scholar 

  25. Achyuthan KE, Bergstedt TS, Chen L, Jones RM, Kumaraswamy S, Kushon SA, Ley KD, Lu L, McBranch D, Mukundan H, Rininsland F, Shi X, Xia W, Whitten DG. Fluorescence superquenching of conjugated polyelectrolytes: Applications for biosensing and drug discovery. J Mater Chem, 2005, 15: 2648–2656

    Article  CAS  Google Scholar 

  26. Herland A, Inganäs O. Conjugated polymers as optical probes for protein interactions and protein conformations. Macromol Rapid Commun, 2007, 28: 1703–1713

    Article  CAS  Google Scholar 

  27. Li C, Numata M, Takeuchi M, Shinkai S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew Chem Int Ed, 2005, 44: 6371–6374

    Article  CAS  Google Scholar 

  28. Maynor MS, Nelson TL, Sullivan CO, Lavigne JJ. A food freshness sensor using the multistate response from analyte-induced aggregation of a cross-reactive poly(thiophene). Org Lett, 2007, 9: 3217–3220

    Article  CAS  Google Scholar 

  29. Yao Z, Li C, Shi G. Optically active supramolecular complexes of water-soluble achiral polythiophenes and folic acid: Spectroscopic studies and sensing applications. Langmuir, 2008, 24: 12829–12835

    Article  CAS  Google Scholar 

  30. Xue C, Cai F, Liu H. Ultrasensitive fluorescent responses of water-soluble, zwitterionic, boronic acid-bearing, regioregular head-to-tail polythiophene to biological species. Chem Eur J, 2007, 14: 1648–1653

    Article  Google Scholar 

  31. Chen LH, McBranch DW, Wang HL, Helgeson R, Wudl F, Whitten DG. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci USA, 1999, 96: 12287–12292

    Article  CAS  Google Scholar 

  32. Wang DL, Gong X, Heeger PS, Rininsland F, Bazan GC, Heeger AJ, Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases. Proc Natl Acad Sci USA, 2002, 109: 49–53

    Article  Google Scholar 

  33. Pinto MR, Schanze KS. Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc Natl Acad Sci USA, 2004, 101: 7505–7510

    Article  CAS  Google Scholar 

  34. Swager TM. The molecular wire approach to sensory signal amplification. Acc Chem Res, 1998, 31: 201–207

    Article  CAS  Google Scholar 

  35. Kim J, McQuade DT, McHugh SK, Swager TM. Ion-specific aggregation in conjugated polymers: Highly sensitive and selective fluorescent ion chemosensors. Angew Chem Int Ed, 2000, 39: 3868–3872

    CAS  Google Scholar 

  36. Pu KY, Li K, Zhang XH, Liu B. Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater, 2010, 22: 643–646

    Article  CAS  Google Scholar 

  37. Liu B, Gaylord BS, Wang S, Bazan GC. Effect of chromophore-charge distance on the energy transfer properties of water-soluble conjugated oligomers. J Am Chem Soc, 2003, 125: 6705–6714

    Article  CAS  Google Scholar 

  38. Pu KY, Zhan RY, Liu B. Conjugated polyelectrolyte blend as perturbable energy donor-acceptor assembly with multicolor fluorescence response to proteins. Chem Commun, 2010, 46: 1470–1472

    Article  CAS  Google Scholar 

  39. Pu KY, Shi JB, Wang LH, Cai LP, Wang G, Liu B. Manose-substituted conjugated polyelectrolyte and oligomer as an intelligent energy transfer pair for label-free visual detection of concanavalin A. Macromolecules, 2010, 43: 9690–9697

    Article  CAS  Google Scholar 

  40. Gaylord BS, Heeger AJ, Bazan GC. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J Am Chem Soc, 2003, 125: 896–900

    Article  CAS  Google Scholar 

  41. Ho HA, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew Chem Int Ed, 2002, 41: 1548–1551

    Article  CAS  Google Scholar 

  42. Tang YL, Feng FD, He F, Wang S, Li YL, Zhu DB. Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative. J Am Chem Soc, 2006, 128: 14972–14976

    Article  CAS  Google Scholar 

  43. Fan QL, Zhou Y, Lu XM, Hou XY, Huang W. Water-soluble cationic poly(p-phenyleneethynylene)s (PPEs): Effects of acidity and ionic strength on optical behaviour, Macromolecules, 2005, 38: 2927–2936

    Article  CAS  Google Scholar 

  44. Wang J, Wang D, Miller EK, Moses D, Bazan GC, Heeger AJ. Photoluminescence of water-soluble conjugated polymers: Origin of enhanced quenching by charge transfer. Macromolecules, 2000, 33: 5153–5158

    Article  CAS  Google Scholar 

  45. Wang YY, Liu B. Cationic water-soluble polyfluorene homopolymers and copolymers: Synthesis, characterization and their applications in DNA Sensing. Curr Org Chem, 2011, 15: in press

  46. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed, 2002, 41: 390–412

    Article  CAS  Google Scholar 

  47. Whitelock JM, lozzo RV. Heparan sulfate: A complex polymer charged with biological activity. Chem Rev, 2005, 105: 2745–2764

    Article  CAS  Google Scholar 

  48. Pu KY, Liu B. A multicolor cationic conjugated polymer for naked-eye detection and quantification of heparin. Macromolecules, 2008, 41: 6636–6640

    Article  CAS  Google Scholar 

  49. Shi J, Pu KY, Zhan R, Liu B. Cationic conjugated polymer/heparin interpolyelectrolyte complexes for heparin quantification. Macromol Chem Phys, 2009, 210: 1195–1200

    Article  CAS  Google Scholar 

  50. Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Kluwer Academic/Plenum, 1999

    Google Scholar 

  51. Pu KY, Cai L, Liu B. Design and synthesis of charge-transfer-based conjugated polyelectrolytes as multicolor light-up probes. Macromolecules, 2009, 42: 5933–5940

    Article  CAS  Google Scholar 

  52. Pu KY, Liu B. Fluorescence turn-on responses of anionic and cationic conjugated polymers toward proteins: Effect of electrostatic and hydrophobic interactions. J Phys Chem B, 2010, 114:3077–3084.

    Article  CAS  Google Scholar 

  53. Pu KY, Liu B. Conjugated polyelectrolytes as light-up macromolecular probes for heparin sensing. Adv Funct Mater, 2009, 19: 277–284

    Article  CAS  Google Scholar 

  54. Garreau S, Leclerc M, Errien N, Louarn G. Planar-to-nonplanar conformational transition in thermochromic polythiophenes: A spectro scopic study. Macromolecules, 2003, 36:692–697

    Article  CAS  Google Scholar 

  55. Zhan RY, Fang Z, Liu B. Naked-eye detection and quantification of heparin in serum with a cationic polythiophene. Anal Chem, 2010, 82: 1326–1333

    Article  CAS  Google Scholar 

  56. Langeveld-Voss BMW, Janssen RAJ, Christiaans MPT, Meskers SCJ, Dekkers H, Meijer EW. Circular dichroism and circular polarization of photoluminescence of highly ordered poly3,4-di[(S)-2-methyl-butoxy]thiophene. J Am Chem Soc, 1996, 118: 4908–4909

    Article  CAS  Google Scholar 

  57. Raymond PD, Ray MJ, Callen SN, Marsh NA. Hemostatic monitoring for cardiothoracic surgery patients: conclusions. Perfusion, 2003, 18: 269–276

    Article  CAS  Google Scholar 

  58. Boneu B, de Moerloose P. How and when to monitor a patient treated with low molecular weight heparin. Semin. Thromb Hemost, 2001, 27: 519–522

    Article  CAS  Google Scholar 

  59. Guo JD, Yuan Y, Amemiya S. Voltammetric detection of heparin at polarized blood plasma/1,2-dichloroethane interfaces. Anal Chem, 2005, 77: 5711–5719

    Article  CAS  Google Scholar 

  60. Mathison S, Bakker E. Renewable pH cross-sensitive potentiometric heparin sensors with incorporated electrically charged H+ ionophores. Anal Chem, 1999, 71: 4614–4621

    Article  CAS  Google Scholar 

  61. Langmaier J, Samcová E, Samec Z. Potentiometric sensor for heparin polyion: Transient behavior and response mechanism. Anal Chem, 2007, 79: 2892–2900

    Article  CAS  Google Scholar 

  62. Gemene KL, Meyerhoff ME. Reversible detection of heparin and other polyanions by pulsed chronopotentiometric polymer membrane electrode. Anal Chem, 2010, 82: 1612–1615

    Article  CAS  Google Scholar 

  63. Wang SL, Chang YT. Discovery of heparin chemosensors through diversity oriented fluorescence library approach. Chem Commun, 2008, 1173–1175

  64. Wang M, Zhang DQ, Zhang GX, Zhu DB. The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chem Commun, 2008, 4469–4471

  65. Sauceda JC, Duke RM, Nitz M. Designing fluorescent sensors of heparin. ChemBioChem, 2008, 8: 391–394

    Article  Google Scholar 

  66. Zhong ZL, Anslyn, EV. A colorimetric sensing ensemble for heparin. J Am Chem Soc, 2002, 124: 9014–9015

    Article  CAS  Google Scholar 

  67. Wright AT, Zhong ZL, Anslyn EV. A functional assay for heparin in serum using a designed synthetic receptor. Angew Chem Int Ed, 2005, 44: 5679–5682

    Article  CAS  Google Scholar 

  68. Egawa Y, Hayashida R, Seki T, Anzai J. Fluorometric determination of heparin based on self-quenching of fluorescein-labeled protamine. Talanta 2008, 76: 736–41

    Article  CAS  Google Scholar 

  69. Mecca T, Consoli GML, Geraci C, La Spina R, Cunsolo F. Polycationic calix[8]arenes able to recognize and neutralize heparin. Org Biomol Chem, 2006, 4: 3763–3768

    Article  CAS  Google Scholar 

  70. Sun W, Bandmann H, Schrader T. A fluorescent polymeric heparin sensor. Chem Eur J, 2007, 13: 7701–7707

    Article  CAS  Google Scholar 

  71. Jagt RBC, Gomez-Biagi RF, Nilz M. Pattern-based recognition of heparin contaminants by an array of self-assembling fluorescent receptors. Angew Chem Int Ed, 2009, 48: 1995–1997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, K., Zhan, R., Liang, J. et al. Conjugated polyelectrolytes for label-free visual detection of heparin. Sci. China Chem. 54, 567–574 (2011). https://doi.org/10.1007/s11426-011-4241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4241-y

Keywords

Navigation