Skip to main content
Log in

Novel degradable polymer networks containing acetal components

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel copolymer network with acetal structure was prepared using bis[4-(vinyloxy)butyl] (4-methyl-1,3-phenylene)biscarbamate (BECT) as the crosslinking agent. Firstly, a tri-copolymer of maleic anhydride (MAn), n-butyl vinyl ether (BVE) and 4-hydroxybutyl vinyl ether (HBVE) was synthesized via free-radical polymerization with 2,2′-azobisisobutyronitrile as the initiator. The tri-copolymer consisted of two sorts of alternating units, MAn-alt-BVE and MAn-alt-HBVE. The linear copolymer Poly((MAn-alt-BVE)-co-(MAn-alt-HBVE)) with pending hydroxyl groups was then combined with BECT in the presence of pyridinium p-toluenesulfonate, generating a copolymer network comprising acetal components in the crosslinking segment. This polymer network exhibited degradation in acid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peddada LY, Harris NK, Devore DI, Roth CM. Novel graft copolymers enhance in vitro delivery of antisense oligonucleotides in the presence of serum. J Controll Release, 2009, 140: 134–140

    Article  CAS  Google Scholar 

  2. Qian B, Li J, Wei Q, Bai P, Fang B, Zhao C. Preparation and characterization of pH-sensitive polyethersulfone hollow fiber membrane for flux control. J Memb Scie, 2009, 344: 297–303

    Article  CAS  Google Scholar 

  3. Hayashi H, Iijima M, Kataoka K, Nagasaki Y. pH-Sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules, 2004, 37: 5389–5396

    Article  CAS  Google Scholar 

  4. Timmer MD, Shin H, Horch RA, Ambrose CG, Mikos AG. In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. Biomacromolecules, 2003, 4: 1026–1033

    Article  CAS  Google Scholar 

  5. Stubbe BG, Horkay F, Amsden B, Hennink WE, De Smedt SC, Demeester J. Tailoring the swelling pressure of degrading dextran hydroxyethyl methacrylate hydrogels. Biomacromolecules, 2003, 4: 691–695

    Article  CAS  Google Scholar 

  6. Ulbrich K, Subr V, Podprová P, Bureová M. Synthesis of novel hydrolytically degradable hydrogels for controlled drug release. J Controll Release, 1995, 34: 155–165

    Article  CAS  Google Scholar 

  7. Ogino K, Chen J-S, Ober CK. Synthesis and characterization of thermally degradable polymer networks. Chem Mater, 1998, 10: 3833–3838

    Article  CAS  Google Scholar 

  8. Ober CK, Koerner H. Compounds with substituted cyclic hydrocarbon moieties linked by secondary or tertiary oxycarbonyl-containing moiety for reworkable cured thermosets. US Patent 5948922, 1999-09-07

  9. Crane LN, Ober CK, Bae YC, Yu S, Park J-W. Reworkable thermosetting resin compositions for electronic devices. US Patent 6657031, 2003-12-02

  10. Themistou E, Patrickios CS. Synthesis and characterization of polymer networks and star polymers containing a novel, hydrolyzable acetal-based dimethacrylate cross-linker. Macromolecules, 2006, 39: 73–80

    Article  CAS  Google Scholar 

  11. De Clercq RR, Goethals EJ. Polymer networks containing degradable polyacetal segments. Macromolecules, 1992, 25: 1109–1113

    Article  Google Scholar 

  12. Du J, Ding X, Zheng Z, Peng Y. Synthesis and degradation of intelligent hydrogels containing polyacetal segments. Eur Polym J, 2002, 38: 1033–1037

    Article  CAS  Google Scholar 

  13. Ruckenstein E, Zhang H. Novel copolymer networks via the combination of polyaddition and anionic polymerization. J Polym Sci Part A Polym Chem, 2001, 39: 117–126

    Article  CAS  Google Scholar 

  14. Harrison AP. Effect of temperature on properties of aqueous dispersions of poly(vinyl methyl ether)-maleic anhydride half amide. J Chem Eng Data, 1959, 4: 83–85

    Article  CAS  Google Scholar 

  15. Ko WG, Park JW, Choi DG, Lee UJ, Kim DN, Lee Y. Microfluidic system for bioassay based on nonspherical hydrogel microparticles. Korean Pentent 083784, 2009-08-04

  16. Hattori D, Hani T. Optical retardation films of imidized maleic anhydride-vinyl ether polymers and polarizing plates having their protective films. JP 2009162996, 2009-07-23

  17. Guo X, Deng F, Li L, Prud’homme RK. Synthesis of biocompatible polymeric hydrogels with tunable adhesion to both hydrophobic and hydrophilic surfaces. Biomacromolecules, 2008, 9: 1637–1642

    Article  CAS  Google Scholar 

  18. Giles MR, O’Connor SJO, Hay JN, Winder RJ, Howdle SM. Novel graft stabilizer for the free radical polymerization of methyl methacrylate in supercritical carbon dioxide. Macromolecules, 2000, 33: 1996–1999

    Article  CAS  Google Scholar 

  19. Tenhaeff WE, Gleason KK. Surface-tethered pH-responsive hydrogel thin films as size-selective layers on nanoporous asymmetric membranes. Chem Mater, 2009, 21: 4323–4331

    Article  CAS  Google Scholar 

  20. Sousa-Herves A, Fernandez-Megia E, Riguera Vega R. The pH-sensitive dendritic polymeric micelles as drug delivery systems. WO 2010018286, 2010-02-18

  21. Hsu J-L, Strauss UP. Intramolecular micelles in a copolymer of maleic anhydride and hexyl vinyl ether: determination of aggregation number by luminescence quenching. J Phys Chem, 1987, 91: 6238–6241

    Article  CAS  Google Scholar 

  22. Zhang X, Chen G-C, Collins A, Jacobson S, Morganelli P, Dar YL, Musa OM. Thermally degradable maleimides for reworkable adhesives. J Polym Sci Part A Polym Chem, 2009, 47: 1073–1084

    Article  CAS  Google Scholar 

  23. Zimmerman RL, Jones GD, Nummy WR. Vinyl ethers of diethylene glycol. I & EC Prod Res Develop, 1963, 2: 296–303

    Article  CAS  Google Scholar 

  24. Hashimoto T, Nakamura T, Tanahashi S, Kodaira T. Gel formation in cationic polymerization of divinyl ethers. III. Effect of oligooxyethylene chain versus oligomethylene chain as central spacer units. J Polym Sci Part A Polym Chem, 2004, 42: 3729–3738

    Article  CAS  Google Scholar 

  25. Gisselfalt K, Edberg B, Flodin P. Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions. Biomacromolecules, 2002, 3: 951–958

    Article  CAS  Google Scholar 

  26. Adelmann R, Mela P, Gallyamov MO, Keul H, Möller M. Synthesis of high-molecular-weight linear methacrylate copolymers with spiropyran side groups: conformational changes of single molecules in solution and on surfaces. J Polym Sci Part A Polym Chem, 2009, 47: 1274–1283

    Article  CAS  Google Scholar 

  27. Ruckenstein E, Zhang HM. Self-polyaddition of hydroxyalkyl vinyl ethers. J Polym Sci Part A Polym Chem, 2000, 38: 3751–3760

    Article  Google Scholar 

  28. Carlise JR, Kriegel RM, Rees Jr WS, Weck M. Synthesis and hydrolysis behavior of side-chain functionalized norbornenes. J Org Chem, 2005, 70: 5550–5560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, X., Shi, Y. & Fu, Z. Novel degradable polymer networks containing acetal components. Sci. China Chem. 54, 419–425 (2011). https://doi.org/10.1007/s11426-011-4223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4223-0

Keywords

Navigation