Skip to main content
Log in

Mechanical and thermal properties of polypeptide modified hydroxyapatite/poly(L-lactide) nanocomposites

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new type of polypeptide (poly(γ-benzyl-l-glutamate) (PBLG)) modified hydroxyapatite (HA)/poly(l-lactide) (PLLA) nanocomposites (PBLG-g-HA/PLLA) were prepared by the solvent-mixing method, and their mechanical and thermal properties were investigated. The tensile test showed that the mechanical properties of PBLG-g-HA/PLLA nanocomposites were better than that of PLLA, even a 0.3 wt% content of PBLG-g-HA in the nanocomposites could make the tensile strength 12% higher than that of the neat PLLA sample, and the tensile modulus was about 17% higher than that of the PLLA sample. The thermal gravimetric analysis (TGA) showed that the PBLG-g-HA/PLLA composites have better thermal stability than the PLLA sample. The differential scanning calorimetry (DSC) was used to characterize the effect of PBLG-g-HA on the crystallization of PLLA. The isothermal crystallization behavior showed that the half crystallization time (t 1/2) of PBLG-g-HA/PLLA was much shorter than that of the PLLA sample. When the PBLG-g-HA content was 10%, t 1/2 was only 18.7 min, while t 1/2 of the PLLA sample was 61.4 min. The results showed that the PBLG-g-HA worked as a nucleating agent and enhanced the crystallization speed of PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McConnell D, Frajola WJ, Deamer DW. Relation between inorganic chemistry and biochemistry of bone mineralization. Science, 1961, 133(344): 281–282

    Article  CAS  Google Scholar 

  2. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684–1688

    Article  CAS  Google Scholar 

  3. Durrieu MC, Pallu S, Guillemot F, Bareille R, Amedee J, Baquey C, Labrugère C, Dard M. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci-Mater Med, 2004, 15(7): 779–786

    Article  CAS  Google Scholar 

  4. Lee HJ, Choi HW, Kim KJ, Lee SC. Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem Mater, 2006, 18(21): 5111–5118

    Article  CAS  Google Scholar 

  5. Yang ZW, Jiang YS, Yu LX, Wen B, Li FF, Shemmei S, Hou T. Preparation and characterization of magnesium doped hydroxyapatite gelatin nanocomposite. J Mater Chem, 2005, 15(18): 1807–1811

    Article  CAS  Google Scholar 

  6. Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials, 2002, 23(19): 3919–3926

    Article  CAS  Google Scholar 

  7. Chang JH, Park ME, Shin Y, Exarhos GJ, Kim KJ, Lee SC, Oh KS. Functional scaffolds of bicontinuous, thermoresponsive l-3-phase silica/hydroxyapatite nanocomposites. J Mater Chem, 2007, 17(3): 238–242

    Article  CAS  Google Scholar 

  8. Hong ZK, Zhang PB, Liu AX, Chen L, Chen XS, Jing XB. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J Biomed Mater Res A, 2007, 81A(3): 515–522

    Article  CAS  Google Scholar 

  9. Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers — Polylactide: A critique. Eur Polym J, 2007, 43(10): 4053–4074

    Article  CAS  Google Scholar 

  10. Wildemann B, Kandziora F, Krummrey G, Palasdies N, Haas NP, Raschke M, Schmidmaier G. Local and controlled release of growth factors (combination of IGF-I and TGF-beta I, and BMP-2 alone) from a polylactide coating of titanium implants does not lead to ectopic bone formation in sheep muscle. J Control Release, 2004, 95(2): 249–256

    Article  CAS  Google Scholar 

  11. Cai Q, Yang JA, Bei JZ, Wang SG. A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials, 2002, 23(23): 4483–4492

    Article  CAS  Google Scholar 

  12. Hasegawa S, Ishii S, Tamura J, Furukawa T, Neo M, Matsusue Y, Shikinami Y, Okuno M, Nakamura T. A 5–7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures. Biomaterials, 2006, 27(8): 1327–1332

    Article  CAS  Google Scholar 

  13. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Device, 2005, 2(3): 303–317

    Article  CAS  Google Scholar 

  14. Jeong SI, Ko EK, Yum J, Jung CH, Lee YM, Shin H. Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol Biosci, 2008, 8(4): 328–338

    Article  CAS  Google Scholar 

  15. Matsuo A, Chiba H, Takahashi H, Toyoda J, Abukawa H. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-l-lactide mesh tray for mandibular reconstruction. Odontology, 2010, 98(1): 85–88

    Article  Google Scholar 

  16. Kawachi R, Watanabe S, Suzuki K, Asamura H. Clinical application of costal coaptation pins made of hydroxyapatite and poly-l-lactide composite for posterolateral thoracotomy. Eur J Cardio-Thoracic Surgery, 2008, 34(3): 510–513

    Article  Google Scholar 

  17. Zhou WY, Duan B, Wang M, Cheung WL. Crystallization kinetics of poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Appl Polym Sci, 2009, 113(6): 4100–4115

    Article  CAS  Google Scholar 

  18. Takayama T, Todo M. Improvement of mechanical properties of hydroxyapatite particle-filled poly(l-lactide) biocomposites using lysine tri-isocyanate. J Mater Sci, 2009, 44(18): 5017–5020

    Article  CAS  Google Scholar 

  19. Supova M. Problem of hydroxyapatite dispersion in polymer matrices: A review. J Mater Sci-Mater Med, 2009, 20(6):1201–1213

    Article  CAS  Google Scholar 

  20. Dupraz AMP, de Wijn JR, vander Meer SAT, de Groot K. Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res, 1996, 30(2): 231–238

    Article  CAS  Google Scholar 

  21. Liu Q, de Wijn JR, van Blitterswijk CA. A study on the grafting reaction of isocyanates with hydroxyapatite particles. J Biomed Mater Res, 1998, 40(3): 358–364

    Article  CAS  Google Scholar 

  22. Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB. Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. Polymer, 2004, 45(19): 6699–6706

    Article  CAS  Google Scholar 

  23. Qiu XY, Chen L, Hu JL, Sun JR, Hong ZK, Liu AX, Chen XS, Jing XB. Surface-modified hydroxyapatite linked by l-lactic acid oligomer in the absence of catalyst. J Polym Sci Pol Chem, 2005, 43(21): 5177–5185

    Article  CAS  Google Scholar 

  24. Wei JC, Liu AX, Chen L, Zhang PB, Chen XS, Jing XB. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride. Macromol Biosci, 2009, 9(7): 631–638

    Article  CAS  Google Scholar 

  25. Nam JY, Ray SS, Okamoto M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules, 2003, 36(19): 7126–7131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueSi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Dai, Y., Chen, Y. et al. Mechanical and thermal properties of polypeptide modified hydroxyapatite/poly(L-lactide) nanocomposites. Sci. China Chem. 54, 431–437 (2011). https://doi.org/10.1007/s11426-011-4221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4221-2

Keywords

Navigation