Skip to main content
Log in

In situ polymerized poly(butylene succinate-co-ethylene terephthalate)/hydroxyapatite nanocomposite with adjusted thermal, mechanical and hydrolytic degradation properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

New nanocomposites of poly(butylene succinate-co-ethylene terephthalate)/nano hydroxyapatite were synthesized using two-step in situ polycondensation. The composition, microstructure, morphology and dispersion of nanoparticles in the nanocomposites were studied using proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that presence of nano hydroxyapatite catalyzes the reaction and there is a chemical bond between nanoparticles and polymer which leads to a good particle dispersion but it doesn’t affect molecular sequence length. Nanocomposites’ thermal properties evaluated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD), showed that crystallinity and crystallite size slightly decrease with the nanoparticles weight fraction. Moreover, the elastic modulus slightly increases and tensile strength and elongation at break decrease with the nanoparticles weight fraction according to dynamic mechanical thermal analysis (DMTA) and tensile analysis. Introducing nano hydroxyapatite increases the hydrolytic degradability dramatically because of the presence of hydrophilic nanoparticle and lower crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. J. Phua, N. S. Lau, K. Sudesh, W. S. Chow, and Z. M. Ishak, J. Compos. Mater., 49, 891 (2015).

    Article  CAS  Google Scholar 

  2. X. Li and Z. Qiu, Macromol. Res., 23, 678 (2015).

    Article  CAS  Google Scholar 

  3. Y. Sung, T. H. Kim, and B. Lee, Macromol. Res., 24, 143 (2016).

    Article  CAS  Google Scholar 

  4. Y. Huang, X. Niu, L. Wang, X. Li, G. Zhou, Q. Feng, J. Fan, and Y. Fan, J. Compos. Mater., 48, 1971 (2014).

    Article  CAS  Google Scholar 

  5. A. N. Koo, J. Y. Ohe, D. W. Lee, J. Chun, H. J. Lee, Y. D. Kwon, and S. C. Lee, Macromol. Res., 23, 1168 (2015).

    Article  CAS  Google Scholar 

  6. S. Zhan, J. Wang, Q. Qi, M. Li, W. Wang, S. Ding, and S. Chen, J. Polym. Res., 22, 161 (2015).

    Article  Google Scholar 

  7. B. Laycock, P. Halley, S. Pratt, A. Werker, and P. Lant, Prog. Polym. Sci., 38, 536 (2013).

    Article  CAS  Google Scholar 

  8. Y. J. Kim, G. D. Kang, K. C. Yoon, Y. Hwang, and O. Park, Macromol. Res., 23, 887 (2015).

    Article  CAS  Google Scholar 

  9. D. N. Bikiaris and D. S. Achilias, Polymer, 49, 3677 (2008).

    Article  CAS  Google Scholar 

  10. G. H. Eshaq and A. E. ElMetwally, J. Mol. Liquids, 214, 1 (2016).

    Article  CAS  Google Scholar 

  11. S. L. Li, F. Wu, Y. Yang, Y. Z. Wang, and J. B. Zeng, Polym. Adv. Technol., 26, 1003 (2015).

    Article  CAS  Google Scholar 

  12. H. Shirali, M. Rafizadeh, and F. A. Taromi, Macromol. Res., 23, 755 (2015).

    Article  CAS  Google Scholar 

  13. C. Harms, K. Helms, T. Taschner, I. Stratos, A. Ignatius, T. Gerber, S. Lenz, S. Rammelt, B. Vollmar, and T. Mittlmeier, Int. J. Nanomed., 7, 2883 (2012).

    Article  CAS  Google Scholar 

  14. S. Dadbin and F. Naimian, Polym. Int., 63, 1063 (2014).

    Article  CAS  Google Scholar 

  15. Z. C. Xing, S. J. Han, Y. S. Shin, and I. K. Kang, J. Nanomater., 2011 (2011).

    Google Scholar 

  16. H. R. Kricheldorf, Chem. Rev., 109, 5579 (2009).

    Article  CAS  Google Scholar 

  17. R. A. Gross, M. Ganesh, and W. Lu, Trends Biotechnol., 28, 435 (2010).

    Article  CAS  Google Scholar 

  18. R. R. Fan, L. X. Zhou, W. Song, D. X. Li, D. M. Zhang, Y. Zheng, G. Guo, and R. Ye, Int. J. Biol. Macromol., 59, 227 (2013).

    Article  CAS  Google Scholar 

  19. V. Tserki, P. Matzinos, E. Pavlidou, and C. Panayiotou, Polym. Degrad. Stab., 91, 377 (2006).

    Article  CAS  Google Scholar 

  20. M. Soccio, N. Lotti, M. Gigli, L. Finelli, M. Gazzano, and A. Munari, Polym. Int., 61, 1163 (2012).

    Article  CAS  Google Scholar 

  21. R. S. Loup, T. Jeanmaire, J. J. Robin, and B. Boutevin, Polymer, 44, 3437 (2003).

    Article  Google Scholar 

  22. C. H. Chen, H. Y. Lu, M. Chen, J. S. Peng, C. J. Tsai, and C. S. Yang, J. Appl. Polym. Sci., 111, 1433 (2009).

    Article  CAS  Google Scholar 

  23. R. N. Panda, M. F. Hsieh, R. J. Chung, and T. S. Chin, J. Phys. Chem. Solids, 64, 193 (2003).

    Article  CAS  Google Scholar 

  24. S. Gandhi, S. Sethuraman, and U. M. Krishnan, Macromol. Res., 21, 833 (2013).

    Article  CAS  Google Scholar 

  25. A. Jayaraman, J. Polym. Sci., Part B: Polym. Phys., 51, 524 (2013).

    Article  CAS  Google Scholar 

  26. H. J. Lee, S. E. Kim, H. W. Choi, C. W. Kim, K. J. Kim, and S. C. Lee, Eur. Polym. J., 43, 1602 (2007).

    Article  CAS  Google Scholar 

  27. B. K. Money, K. Hariharan, and J. Swenson, J. Phys. Chem. B, 116, 7762 (2012).

    Article  CAS  Google Scholar 

  28. A. Bansal, H. Yang, C. Li, K. Cho, B. C. Benicewicz, S. K. Kumar, and L. S. Schadler, Nature, 4, 693 (2005).

    Article  CAS  Google Scholar 

  29. X. Zhang, Y. Li, G. Lv, Y. Zuo, and Y. Mu, Polym. Degrad. Stab., 91, 1202 (2006).

    Article  CAS  Google Scholar 

  30. M. S. Nikolic and J. Djonlagic, Polym. Degrad. Stab., 74, 263 (2001).

    Article  CAS  Google Scholar 

  31. Y. X. Pang and X. Bao, J. Eur. Ceram. Soc., 23, 1697 (2003).

    Article  CAS  Google Scholar 

  32. K. M. Choi, S. W. Lim, M. C. Choi, D. H. Han, and C. S. Ha, Macromol. Res., 22, 1312 (2014).

    Article  CAS  Google Scholar 

  33. M. R. Khan, H. Mahfuz, T. Leventouri, V. K. Rangari, and A. Kyriacou, Polym. Eng. Sci., 51, 654 (2011).

    Article  CAS  Google Scholar 

  34. S. D. Hoyo-Gallego, L. Pérez-Álvarez, F. Gómez-Galván, E. Lizundia, I. Kuritka, V. Sedlarik, J. M. Laza, and J. L. Vila-Vilela, Carbohydr. Polym., 143, 35 (2016).

    Article  Google Scholar 

  35. A. Bahader, H. Gui, Y. Li, P. Xu, and Y. Ding, Macromol. Res., 23, 273 (2015).

    Article  CAS  Google Scholar 

  36. S. N. Sheikholeslami, M. Rafizadeh, F. A. Taromi, and H. Bouhendi, J. Thermoplast. Compos., 27, 1530 (2014).

    Article  CAS  Google Scholar 

  37. H. A. M. Saeed, Y. A. Eltahir, Y. Xia, and W. Yimin, Polym. Bull., 71, 595 (2014).

    Article  CAS  Google Scholar 

  38. J. D. Menczel and R. B. Prime, in Thermal Analysis of Polymers: Fundamentals and Applications, Wiley, 2009, Chap. 2.

    Book  Google Scholar 

  39. H. Shirali, M. Rafizadeh, and F. A. Taromi, J. Compos. Mater., 48, 301 (2014).

    Article  CAS  Google Scholar 

  40. X. Deng, J. Hao, and C. Wang, Biomaterials, 22, 2867 (2001).

    Article  CAS  Google Scholar 

  41. Y. Srithep, P. Nealey, and L. S. Turng, Polym. Eng. Sci., 53, 580 (2013).

    Article  CAS  Google Scholar 

  42. S. N. Sheikholeslami, M. Rafizadeh, F. A. Taromi, H. Shirali, and E. Jabbari, Polymer, 98, 70 (2016).

    Article  CAS  Google Scholar 

  43. D. Barati, S. Moeinzadeh, O. Karaman, and E. Jabbari, Polymer, 55, 3894 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rafizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirali, H., Rafizadeh, M. & Taromi, F.A. In situ polymerized poly(butylene succinate-co-ethylene terephthalate)/hydroxyapatite nanocomposite with adjusted thermal, mechanical and hydrolytic degradation properties. Macromol. Res. 24, 900–908 (2016). https://doi.org/10.1007/s13233-016-4131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4131-4

Keywords

Navigation