Skip to main content
Log in

Synthesis and intrinsic blue fluorescence study of hyperbranched poly(ester-amide-ether)

  • Articles
  • SPECIAL TOPIC / Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of hyperbranched poly(ester-amide-ether)s (H-PEAEs) were synthesized via the A2+CB3 approach by the self-transesterification of ethyl ester-amide-ethers end-capped with three hydroxyl groups and ethyl ester group at two terminals. The molecular structures were characterized with 1H NMR and FT-IR spectroscopy. The number average molecular weights were estimated by GPC analysis to possess bimodal wide distribution from 1.57 to 2.09. The strong inherent blue fluorescence was observed at 330 nm for excitation and 390 nm for emission. Moreover, the emission intensity and fluorescence quantum yield increased along with the incorporated ether chain length, as well as almost linearly with the H-PEAE concentration in an aqueous solution. For comparing the fluorescence performance, the linear poly(ester-amide-ether) (L-PEAE) and hyperbranched poly(ester-amide) (H-PEA) were synthesized. The results showed that the coexistence of ether bond and carboxyl group in the molecular chain was essential for generating the strong fluorescence. However, the compact backbone of H-PEAE would be propitious to the enhancement of fluorescence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuila BK, Garai A, Nandi AK. Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly(3-hexylthiophene) nanocomposites: Enhanced luminescence property in the nanocomposite thin films. Chem Mater, 2007, 19: 5443–5452

    Article  CAS  Google Scholar 

  2. Zheng J, Dickson RM. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc, 2002, 124: 13982–13983

    Article  CAS  Google Scholar 

  3. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538–544

    Article  CAS  Google Scholar 

  4. Gao C, Yan D. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29: 183–275

    Article  CAS  Google Scholar 

  5. De Schryver FC, Vosch T, Cotlet M, Van Der Auweraer M, Müllen K, Hofken S. Energy dissipation in multichromophoric single dendrimers. J Acc Chem Res, 2005, 38: 514–522

    Article  Google Scholar 

  6. Gao C, Hou J, Yan DY, Wang ZJ. Preparation and characterization of fluorescent hyperbranched polyether. React & Funct Polym, 2004, 58: 65–72

    Article  CAS  Google Scholar 

  7. Gao C, Yan DY, Zhang B, Chen W. Fluorescence studies on the hydrophobic association of pyrene-labeled amphiphilic hyperbranched poly(sulfone-amine)s. Langmuir, 2002, 18: 3708–3713

    Article  CAS  Google Scholar 

  8. He QY, Lai WY, Ma Z, Chen DY, Huang W. Novel blue light-emitting hyperbranched polyfluorenes incorporating carbazole kinked structure. Euro Polym J, 2008, 44: 3169–3176

    Article  CAS  Google Scholar 

  9. Wu GL, Yang Y, He C, Chen XM, Li YF. A new triphenylaminebased hyperbranched polyfluorene with oxadiazole units on its side chains. Euro Polym J, 2008, 44: 4047–4053

    Article  CAS  Google Scholar 

  10. Peng Q, Yan LS, Chen DZ, Wang FZ, Wang P, Zou DC. Synthesis and characterization of hyperbranched polyfluorenes containing triarylpyrazoline cores towards efficient blue light-emitting diodes. J Polym Sci Part A: Polym Chem, 2007, 45: 5296–5307

    Article  CAS  Google Scholar 

  11. Pugh VJ, Hu QS, Pu L. The first dendrimer-based enantioselective fluorescent sensor for the recognition of chiral amino alcohol. Angew Chem Int Ed, 2000, 39: 3638–3641

    Google Scholar 

  12. Ji ML, Yang WL, Ren QG, Lu DR. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine). Nanotechnology, 2009, 20: 075101

    Article  Google Scholar 

  13. Liu CH, Gao C, Yan DY. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew Chem Int Ed, 2007, 46: 4128–4131

    Article  CAS  Google Scholar 

  14. Lee WI, Bae Y, Bard AJ. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc, 2004, 126: 8358–8359

    Article  CAS  Google Scholar 

  15. Wang DJ, Imae T. Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc, 2004, 126: 13204–13205

    Article  CAS  Google Scholar 

  16. Wang DJ, Imae T, Miki M. Fluorescence emission from PAMAM and PPI dendrimers. J Colloid Interf Sci, 2007, 312: 8–13

    Article  CAS  Google Scholar 

  17. Wu DC, Liu Y, He CB, Goh SH. Blue Photoluminescence from hyperbranched poly(amino ester)s. Macromolecules, 2005, 38: 9906–9909

    Article  CAS  Google Scholar 

  18. Pastor PL, Chen Y, Shen Z, Lahoz A, Stiriba SE. Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: Polymer architectures and pH-effects. Macromol Rapid Commun, 2007, 28: 1404–1409

    Article  Google Scholar 

  19. Kataky R, Nicholson PE, Parker D. Comparative study of mono- and di-substituted 14-crown-4 derivatives as lithium ionophores. J Chen Soc, Perkin Trans, 1990, 2: 321–327

    Article  Google Scholar 

  20. Dayan I, Libman J, Shanzer A, Felder CE, Lifson S. Regulation of Molecular conformation of chiral tripodal structures by Ca2+ binding. J Am Chem Soc, 1991, 113: 3431–3439

    Article  CAS  Google Scholar 

  21. Newkome GR, Baker GR, Arai S, Saunders MJ, Russo PS, Theriot KJ, Moorefield CN, Rogers LE, Miller JE, Lieux TR, Murray ME, Phillips B, Pascal L. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gels. J Am Chem Soc, 1990, 112: 8458–8465

    Article  CAS  Google Scholar 

  22. Li XR, Lu XF, Lin Y, Zhan J, Li YS, Liu ZQ, Chen XS, Liu SY. Synthesis and characterization of hyperbranched poly(ester-amide)s from commercially available dicarboxylic acids and multihydroxyl primary amines. Macromolecules, 2006, 39: 7889–7899

    Article  CAS  Google Scholar 

  23. Shi WF, Ranby B. Photopolymerization of dendritic methacrylated polyesters. I. Synthesis and properties. J Appl Polym Sci, 1996, 59: 1937–1944

    CAS  Google Scholar 

  24. Albani JR. Principles and Applications of Fluorescence Spectroscopy. Oxford: Blackwell Science Ltd, 2007. 101–102

    Book  Google Scholar 

  25. Lianos Bekiari PV, Stangar UL, Orel B, Judeinstein P. Optimization of the intensity of luminescence emission from silica/poly(ethylene oxide) and silica/poly(propylene oxide) nanocomposite gels. Chem Mater, 2000, 12: 3095–3099

    Article  Google Scholar 

  26. Brankova T, Bekiari V, Lianos P. Photoluminescence from sol-gel organic/inorganic hybrid gels obtained through carboxylic acid solvolysis. Chem Mater, 2003, 15: 1855–1859

    Article  CAS  Google Scholar 

  27. Carlos LD, de Zea Bermudez V, Ferreira RAS, Marques L, Assuno M. Sol-gel derived urea cross-linked organically modified silicates. 2. Blue-light emission. Chem Mater, 1999, 11: 581–588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenFang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Fu, Q. & Shi, W. Synthesis and intrinsic blue fluorescence study of hyperbranched poly(ester-amide-ether). Sci. China Chem. 53, 2452–2460 (2010). https://doi.org/10.1007/s11426-010-4154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4154-1

Keywords

Navigation