Skip to main content
Log in

Glucose oxidase as a blocking agent-based signal amplification strategy for the fabrication of label-free amperometric immunosensors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor. L-cysteine@ferrocene functionalized chitosan, which possessed not only efficient redox-activity but also excellent film-forming ability, was coated on the bare glass carbon electrode. Moreover, the thiol groups (-SH) in the ferrocenyl compound were used for gold nanoparticles immobilization via the strong bonding interaction, which could further be utilized for the immobilization of antibody biomolecules with well-retained bioactivities. Finally, glucose oxidase (GOD) as the enzyme membrane was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the excellent electrocatalytic properties of GOD towards glucose, the amplification of antigen-antibody interaction and the enhanced sensitivity could be achieved. Under the optimal conditions, the linear range of the proposed immunosensor for the determination of carcinoembryonic antigen (CEA) was from 0.05 to 100 ng/mL with a detection limit of 0.02 ng/mL (S/N = 3). Moreover, the immunosensor exhibited good selectivity, stability and reproducibility, which provided a promising potential for clinical immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer, 2003, 3: 267–275

    Article  CAS  Google Scholar 

  2. Kitano H. Systems biology: A brief overview. Science, 2002, 295: 1662–1664

    Article  CAS  Google Scholar 

  3. Srinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. Lancet Oncol, 2001, 2: 698–704

    Article  CAS  Google Scholar 

  4. Voller A, Bartlett A, Bidwell DE. Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol, 1978, 31: 507–520

    Article  CAS  Google Scholar 

  5. Goldsmith SJ. Radioimmunoassay: Review of basic principles. Semin Nucl Med, 1975, 5: 125–152

    Article  CAS  Google Scholar 

  6. Matsuya T, Tashiro S, Hoshino N, Shibata N, Nagasaki Y, Kataoka K. A core-shell-type fluorescent nanosphere possessing reactive poly(ethylene glycol) tethered chains on the surface for zeptomole detection of protein in time-resolved fluorometric immunoassay. Anal Chem, 2003, 75: 6124–6132

    Article  CAS  Google Scholar 

  7. Tadic SC, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E. High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip, 2004, 4: 563–569

    Article  CAS  Google Scholar 

  8. Fu ZF, Hao C, Fei X, Ju HX. Flow-injection chemiluminescent immunoassay for α-fetoprotein based on epoxysilane modified glass microbeads. J Immunol Methods, 2006, 312: 61–67

    Article  CAS  Google Scholar 

  9. Fu ZF, Yan F, Liu H, Yang ZJ, Ju HX. Channel-resolved multianalyte immunosensing system for flow-through chemiluminescent detection of α-fetoprotein and carcinoembryonic antigen. Biosens Bioelectron, 2008, 23: 1063–1069

    Article  CAS  Google Scholar 

  10. Schmalzing D, Nashabeh W. Capillary electrophoresis based immunoassays: A critical review. Electrophoresis, 1997, 18: 2184–2193

    Article  CAS  Google Scholar 

  11. Niederkofler EE, Tubbs KA, Gruber K, Nedelkov D, Kiernan UA, Williams P, Nelson RW. Determination of β-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. Anal Chem, 2001, 73: 3294–3299

    Article  CAS  Google Scholar 

  12. Hu SH, Zhang SC, Hu ZC, Xing Z, Zhang XR. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies. Anal Chem, 2007, 79: 923–929

    Article  CAS  Google Scholar 

  13. Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A, Yajima T, Kameshima H, Watanabe N. Detection of human serum tumor necrosis factor-α in healthy donors, using a highly sensitive immuno-PCR assay. Clin Chem, 1999, 45: 665–669

    CAS  Google Scholar 

  14. Tan F, Yan F, Ju HX. A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer. Electrochem Commun, 2006, 8: 1835–1839

    Article  CAS  Google Scholar 

  15. Lai GS, Yan F, Ju HX. Dual signal amplification of glucose oxidasefunctionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem, 2009, 81: 9730–9736

    Article  CAS  Google Scholar 

  16. Cheng W, Yan F, Ding L, Ju HX, Yin YB. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem, 2010, 82: 3337–3342

    Article  CAS  Google Scholar 

  17. Yuan R, Zhuo Y, Chai YQ, Zhang Y, Sun AL. Determination of carcinoembryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine. Sci China Ser B-Chem, 2007, 50: 97–104

    Article  CAS  Google Scholar 

  18. Wu J, Tang JH, Dai Z, Yan F, Ju HX, Murr NE. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron, 2006, 22: 102–108

    Article  CAS  Google Scholar 

  19. Dai Z, Yan F, Yu H, Hu XY, Ju HX. Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen. J Immunol Methods, 2004, 287: 13–20

    Article  CAS  Google Scholar 

  20. Dai Z, Chen J, Yan F, Ju HX. Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionine monolayer modified gold electrode. Cancer Detection and Prevention, 2005, 29: 233–240

    Article  CAS  Google Scholar 

  21. Zhuo Y, Yuan R, Chai YQ, Tang DP, Zhang Y, Wang N, Li XL, Zhu Q. A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of a-1-fetoprotein. Electrochem Commun, 2005, 7: 355–360

    Article  CAS  Google Scholar 

  22. Song ZJ, Yuan R, Chai YQ, Yin B, Fu P, Wang JF. Multilayer structured amperometric immunosensor based on gold nanoparticles and Prussian blue nanoparticles/nanocomposite functionalized interface. Electrochim Acta, 2010, 55: 1778–1784

    Article  CAS  Google Scholar 

  23. Badia A, Carlini R, Fernandez A, Battaglini F, Mikkelsen SR, English AM. Intramolecular electron-transfer rates in ferrocene-derivatized glucose oxidase. J Am Chem Soc, 1993, 115: 7053–7060

    Article  CAS  Google Scholar 

  24. Kandimalla VB, Tripathi VS, Ju H. Aconductiveormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials, 2006, 27: 1167–1174

    Article  CAS  Google Scholar 

  25. Lin JH, Qu W, Zhang SS. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal Biochem, 2007, 36: 288–293

    Article  CAS  Google Scholar 

  26. Lu XB, Hu JQ, Yao X, Wang ZP, Li JH. Composite system based on chitosan and room temperature ionic liquid: Direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules, 2006, 7: 975–980

    Article  CAS  Google Scholar 

  27. Chen J, Yan F, Dai Z, Ju HX. Reagentless amperometric immunosensors for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosens Bioelectron, 2005, 21: 330–336

    Article  CAS  Google Scholar 

  28. Cui RJ, Huang HP, Yin ZZ, Gao D, Zhu JJ. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron, 2008, 23: 1666–1673

    Article  CAS  Google Scholar 

  29. Li N, Yuan R, Chai YQ, Chen SH, An HZ, Li WJ. New Antibody immobilization strategy based on gold nanoparticles and azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor. J Phys Chem C, 2007, 111: 8443–8450

    Article  CAS  Google Scholar 

  30. Zhuo Y, Yuan R, Chai YQ, Sun AL, Zhang Y, Yang JZ. A tris (2,2′-bipyridyl) cobalt(III)-bovine serum albumin composite membrane for biosensors. Biomaterials, 2006, 27: 5420–5429

    Article  CAS  Google Scholar 

  31. Song ZJ, Yuan R, Chai YQ, Wang JF, Che X. Dual amplification strategy for the fabrication of highly sensitive amperometric immunosensor based on nanocomposite functionalized interface. Sens Actuators B, 2010, 145: 817–825

    Article  CAS  Google Scholar 

  32. Frens G. Preparation of gold dispersions of varying particle size: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature-Phys Sci, 1973, 241: 20–22

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. Wiley, New York, 1980

    Google Scholar 

  34. Calvo EJ, Etchenique R, Danilwicz C, Diaz L. Electrical communication between electrodes and enzymes mediated by redox hydrogels. Anal Chem, 1996, 68: 4186–4193

    Article  CAS  Google Scholar 

  35. Shan D, Yao WJ, Xue HG. Electrochemical study of ferrocenemethanol modified layered double hydroxides composite matrix: Potential application in the development of amperometric biosensors. Biosens Bioelectron, 2007, 23: 432–437

    Article  CAS  Google Scholar 

  36. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem, 1984, 56: 667–671

    Article  CAS  Google Scholar 

  37. Wang JF, Yuan R, Chai YQ, Yin B, Xu Y, Guan S. An amperometric immunosensor based on layer-by-layer assembly of L-cysteine and nanosized Prussian blue on gold electrode for determination of human chorionic gonadotrophin. Electroanalysis, 2009, 21: 707–714

    Article  CAS  Google Scholar 

  38. Doron A, Katz E, Willner I. Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir, 1995, 11: 1313–1317

    Article  CAS  Google Scholar 

  39. Zhang TT, Yuan R, Chai YQ, Liu KG, Ling SJ. Study on an immunosensor based on gold nanoparticles and a nano-calcium carbonate/Prussian blue modified glassy carbon electrode. Microchim Acta, 2009, 165: 53–58

    Article  CAS  Google Scholar 

  40. Liu ZY, Yuan R, Chai YQ, Zhuo Y, Hong CL, Yang Xia. Highly sensitive, reagentless amperometric immunosensor based on a novel redox-active organic-inorganic composite film. Sens Actuators B, 2008, 134: 625–631

    Article  CAS  Google Scholar 

  41. Tang DY, Xia BY. Electrochemical immunosensor and biochemical analysis for carcinoembryonic antigen in clinical diagnosis. Microchim Acta, 2008, 163: 41–48

    Article  CAS  Google Scholar 

  42. Pan J, Yang Q. Antibody-functionalized magnetic nano-particles for the detection of carcinoembryonic antigen using a flow-injection electrochemical device. Anal Bioanal Chem, 2007, 388: 279–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Yuan, R., Chai, Y. et al. Glucose oxidase as a blocking agent-based signal amplification strategy for the fabrication of label-free amperometric immunosensors. Sci. China Chem. 54, 536–544 (2011). https://doi.org/10.1007/s11426-010-4124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4124-7

Keywords

Navigation